Nanoprinted Quantum Dot-Graphene Photodetectors

被引:65
作者
Grotevent, Matthias J. [1 ,2 ]
Hail, Claudio U. [3 ]
Yakunin, Sergii [1 ,4 ]
Dirin, Dmitry N. [1 ,4 ]
Thodkar, Kishan [2 ,5 ]
Barin, Gabriela Borin [6 ]
Guyot-Sionnest, Philippe [7 ]
Calame, Michel [2 ,5 ]
Poulikakos, Dimos [3 ]
Kovalenko, Maksym V. [1 ,4 ]
Shorubalko, Ivan [2 ]
机构
[1] Swiss Fed Inst Technol, Inorgan Chem Lab, Dept Chem & Appl Biosci, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
[2] Empa Swiss Fed Labs Mat Sci & Technol, Lab Transport Nanoscale Interfaces, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[3] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Lab Thermodynam Emerging Technol, Sonneggstr 3, CH-8092 Zurich, Switzerland
[4] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[5] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[6] Empa Swiss Fed Labs Mat Sci & Technol, Lab Nanotech Surfaces, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[7] Univ Chicago, James Franck Inst, 929 E 57th St, Chicago, IL 60637 USA
基金
欧盟地平线“2020”;
关键词
colloidal quantum dots; electrohydrodynamic printing; graphene; infrared light; photodetectors; ULTRAHIGH;
D O I
10.1002/adom.201900019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photodetectors utilizing graphene field-effect transistors sensitized by colloidal quantum dots exhibit high responsivities under infrared light illumination. Precise, microscopic spatial control over quantum dot deposition is required to gain deeper insight into device mechanisms, optimize device performance, and enable new device architectures and applications. The latter may eventually include photodetectors with subwavelength device dimensions. Here, infrared photodetectors are fabricated by electrohydrodynamic nanoprinting of colloidal PbS quantum dots onto graphene field-effect transistors with varying quantum dot layer thicknesses on a single substrate, demonstrating the potential of the method for realizing small footprint detectors with high spatial resolution. Remarkably, while the responsivity of the photodetectors increases with increasing layer thicknesses up to 130 nm, the noise current is found to be independent of the layer thickness. In addition, the responsivity and noise current are both linearly dependent on the applied drain voltage and drain current. As a result, the specific detectivity is independent of the drain voltage, and the detector can be operated at lower drain voltages thus reducing power consumption. Finally, specific detectivities of at least 10(9) Jones at 1200 nm are obtained, without degradation of the charge carrier mobilities in graphene from the electrohydrodynamic printing.
引用
收藏
页数:7
相关论文
共 39 条
[1]  
Balandin AA, 2013, NAT NANOTECHNOL, V8, P549, DOI [10.1038/nnano.2013.144, 10.1038/NNANO.2013.144]
[2]   Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance [J].
Barin, Gabriela Bonin ;
Song, Yi ;
Gimenez, Iara de Fatima ;
Souza Filho, Antonio Gomes ;
Barretto, Ledjane Silva ;
Kong, Jing .
CARBON, 2015, 84 :82-90
[3]   Confocal reference free traction force microscopy [J].
Bergert, Martin ;
Lendenmann, Tobias ;
Zundel, Manuel ;
Ehret, Alexander E. ;
Panozzo, Daniele ;
Richner, Patrizia ;
Kim, David K. ;
Kress, Stephan J. P. ;
Norris, David J. ;
Sorkine-Hornung, Olga ;
Mazza, Edoardo ;
Poulikakos, Dimos ;
Ferrari, Aldo .
NATURE COMMUNICATIONS, 2016, 7
[4]   Compound Quantum Dot-Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection [J].
Bessonov, Alexander A. ;
Allen, Mark ;
Liu, Yinglin ;
Malik, Surama ;
Bottomley, Joseph ;
Rushton, Ashley ;
Medina-Salazar, Ivonne ;
Voutilainen, Martti ;
Kallioinen, Sami ;
Colli, Alan ;
Bower, Chris ;
Andrew, Piers ;
Ryhanen, Tapani .
ACS NANO, 2017, 11 (06) :5547-5557
[5]   Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval [J].
Besteiro, Lucas V. ;
Zhang, Hui ;
Plain, Jerome ;
Markovich, Gil ;
Wang, Zhiming ;
Govorov, Alexander O. .
ADVANCED OPTICAL MATERIALS, 2017, 5 (16)
[6]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[7]   Biologically inspired graphene-chlorophyll phototransistors with high gain [J].
Chen, Shao-Yu ;
Lu, Yi-Ying ;
Shih, Fu-Yu ;
Ho, Po-Hsun ;
Chen, Yang-Fang ;
Chen, Chun-Wei ;
Chen, Yit-Tsong ;
Wang, Wei-Hua .
CARBON, 2013, 63 :23-29
[8]   Suspended Graphene Sensors with Improved Signal and Reduced Noise [J].
Cheng, Zengguang ;
Li, Qiang ;
Li, Zhongjun ;
Zhou, Qiaoyu ;
Fang, Ying .
NANO LETTERS, 2010, 10 (05) :1864-1868
[9]   Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets [J].
Galliker, P. ;
Schneider, J. ;
Eghlidi, H. ;
Kress, S. ;
Sandoghdar, V. ;
Poulikakos, D. .
NATURE COMMUNICATIONS, 2012, 3
[10]   All-Printable ZnO Quantum Dots/Graphene van der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light [J].
Gong, Maogang ;
Liu, Qingfeng ;
Cook, Brent ;
Kattel, Bhupal ;
Wang, Ti ;
Chan, Wai-Lun ;
Ewing, Dan ;
Casper, Matthew ;
Stramel, Alex ;
Wu, Judy Z. .
ACS NANO, 2017, 11 (04) :4114-4123