Functional role of oligomerization for bacterial and plant SWEET sugar transporter family

被引:264
|
作者
Xuan, Yuan Hu [1 ]
Hu, Yi Bing [1 ,2 ]
Chen, Li-Qing [1 ]
Sosso, Davide [1 ]
Ducat, Daniel C. [3 ,4 ]
Hou, Bi-Huei [1 ]
Frommer, Wolf B. [1 ]
机构
[1] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
[2] Nanjing Agr Univ, Coll Resources & Environm Sci, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
[3] Michigan State Univ, Dept Energy Plant Res Lab, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
关键词
evolution; transporter structure; DISEASE-SUSCEPTIBILITY GENE; LACTOSE PERMEASE; PROTEIN; MOLECULES; BIOSYNTHESIS; RESISTANCE; DROSOPHILA; BLIGHT; CARBON; FORMS;
D O I
10.1073/pnas.1311244110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Eukaryotic sugar transporters of the MFS and SWEET superfamilies consist of 12 and 7 alpha-helical transmembrane domains (TMs), respectively. Structural analyses indicate that MFS transporters evolved from a series of tandem duplications of an ancestral 3-TM unit. SWEETs are heptahelical proteins carrying a tandem repeat of 3-TM separated by a single TM. Here, we show that prokaryotes have ancestral SWEET homologs with only 3-TM and that the Bradyrhizobium japonicum SemiSWEET1, like Arabidopsis SWEET11, mediates sucrose transport. Eukaryotic SWEETs most likely evolved by internal duplication of the 3-TM, suggesting that Semi-SWEETs form oligomers to create a functional pore. However, it remains elusive whether the 7-TM SWEETs are the functional unit or require oligomerization to form a pore sufficiently large to allow for sucrose passage. Split ubiquitin yeast two-hybrid and split GFP assays indicate that Arabidopsis SWEETs homo-and heterooligomerize. We examined mutant SWEET variants for negative dominance to test if oligomerization is necessary for function. Mutation of the conserved Y57 or G58 in SWEET1 led to loss of activity. Coexpression of the defective mutants with functional A. thaliana SWEET1 inhibited glucose transport, indicating that homooligomerization is necessary for function. Collectively, these data imply that the basic unit of SWEETs, similar to MFS sugar transporters, is a 3-TM unit and that a functional transporter contains at least four such domains. We hypothesize that the functional unit of the SWEET family of transporters possesses a structure resembling the 12-TM MFS structure, however, with a parallel orientation of the 3-TM unit.
引用
收藏
页码:E3685 / E3694
页数:10
相关论文
共 50 条
  • [31] Transcriptional regulation of plant sugar transporter genes by beneficial rhizobacteria
    Desrut, Antoine
    Thibault, Florence
    Mercado-Blanco, Jesus
    Coutos-Thevenot, Pierre
    Vriet, Cecile
    JOURNAL OF PLANT INTERACTIONS, 2021, 16 (01) : 443 - 451
  • [32] Oligomerization and trafficking of the human dopamine transporter - Mutational analysis identifies critical domains important for the functional expression of the transporter
    Torres, GE
    Carneiro, A
    Seamans, K
    Fiorentini, C
    Sweeney, A
    Yao, WD
    Caron, MG
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (04) : 2731 - 2739
  • [33] Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9
    Lin, I. Winnie
    Sosso, Davide
    Chen, Li-Qing
    Gase, Klaus
    Kim, Sang-Gyu
    Kessler, Danny
    Klinkenberg, Peter M.
    Gorder, Molly K.
    Hou, Bi-Huei
    Qu, Xiao-Qing
    Carter, Clay J.
    Baldwin, Ian T.
    Frommer, Wolf B.
    NATURE, 2014, 508 (7497) : 1 - +
  • [34] SWEET16 and SWEET17, two novel vacuolar sugar carriers with impact on cellular sugar homeostasis and plant traits
    Klemens, P. A. W.
    Patzke, K.
    Krapp, A.
    Chardon, F.
    Neuhaus, H. E.
    BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 2014, 92 (06): : 589 - 589
  • [35] Plant fructokinases: a sweet family get-together
    Pego, JV
    Smeekens, SCM
    TRENDS IN PLANT SCIENCE, 2000, 5 (12) : 531 - 536
  • [36] Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.)
    Tinku Gautam
    Gautam Saripalli
    Vijay Gahlaut
    Anuj Kumar
    P. K. Sharma
    H. S. Balyan
    P. K. Gupta
    Molecular Biology Reports, 2019, 46 : 2327 - 2353
  • [37] Development and quantitative analysis of a biosensor based on the Arabidopsis SWEET1 sugar transporter
    Park, Jihyun
    Chavez, Taylor M.
    Guistwhite, Jordan A.
    Gwon, Sojeong
    Frommer, Wolf B.
    Cheung, Lily S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (04)
  • [38] Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9
    I Winnie Lin
    Davide Sosso
    Li-Qing Chen
    Klaus Gase
    Sang-Gyu Kim
    Danny Kessler
    Peter M. Klinkenberg
    Molly K. Gorder
    Bi-Huei Hou
    Xiao-Qing Qu
    Clay J. Carter
    Ian T. Baldwin
    Wolf B. Frommer
    Nature, 2014, 508 : 546 - 549
  • [39] Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.)
    Gautam, Tinku
    Saripalli, Gautam
    Gahlaut, Vijay
    Kumar, Anuj
    Sharma, P. K.
    Balyan, H. S.
    Gupta, P. K.
    MOLECULAR BIOLOGY REPORTS, 2019, 46 (02) : 2327 - 2353
  • [40] Functional symmetry of UhpT, the sugar phosphate transporter of Escherichia coli
    Fann, MC
    Maloney, PC
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) : 33735 - 33740