Incentive Learning in Monte Carlo Tree Search

被引:3
|
作者
Kao, Kuo-Yuan [1 ]
Wu, I-Chen [2 ]
Yen, Shi-Jim [3 ]
Shan, Yi-Chang [2 ]
机构
[1] Natl Penghu Univ, Dept Informat Management, Magong City 880, Taiwan
[2] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu 30050, Taiwan
[3] Natl Dong Hwa Univ, Dept Comp Sci & Informat Engn, Hualien 974, Taiwan
基金
美国国家科学基金会;
关键词
Artificial intelligence; combinatorial games; computational intelligence; computer games; reinforcement learning;
D O I
10.1109/TCIAIG.2013.2248086
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte Carlo tree search (MCTS) is a search paradigm that has been remarkably successful in computer games like Go. It uses Monte Carlo simulation to evaluate the values of nodes in a search tree. The node values are then used to select the actions during subsequent simulations. The performance of MCTS heavily depends on the quality of its default policy, which guides the simulations beyond the search tree. In this paper, we propose an MCTS improvement, called incentive learning, which learns the default policy online. This new default policy learning scheme is based on ideas from combinatorial game theory, and hence is particularly useful when the underlying game is a sum of games. To illustrate the efficiency of incentive learning, we describe a game named Heap-Go and present experimental results on the game.
引用
收藏
页码:346 / 352
页数:7
相关论文
共 50 条
  • [1] On Monte Carlo Tree Search and Reinforcement Learning
    Vodopivec, Tom
    Samothrakis, Spyridon
    Ster, Branko
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2017, 60 : 881 - 936
  • [2] Learning in POMDPs with Monte Carlo Tree Search
    Katt, Sammie
    Oliehoek, Frans A.
    Amato, Christopher
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [3] Monte Carlo Tree Search for Bayesian Reinforcement Learning
    Vien, Ngo Anh
    Ertel, Wolfgang
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 138 - 143
  • [4] Automated Machine Learning with Monte-Carlo Tree Search
    Rakotoarison, Herilalaina
    Schoenauer, Marc
    Sebag, Michele
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3296 - 3303
  • [5] A Monte Carlo tree search approach to learning decision trees
    Nunes, Cecilia
    De Craene, Mathieu
    Langet, Helene
    Camara, Oscar
    Jonsson, Anders
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 429 - 435
  • [6] Monte Carlo Tree Search With Reinforcement Learning for Motion Planning
    Weingertner, Philippe
    Ho, Minnie
    Timofeev, Andrey
    Aubert, Sebastien
    Pita-Gil, Guillermo
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [7] Industrial scheduling with Monte Carlo tree search and machine learning
    Lubosch, Marco
    Kunath, Martin
    Winkler, Herwig
    51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2018, 72 : 1283 - 1287
  • [8] Learning to Stop: Dynamic Simulation Monte Carlo Tree Search
    Lan, Li-Cheng
    Wu, Ti-Rong
    Wu, I-Chen
    Hsieh, Cho-Jui
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 259 - 267
  • [9] Monte-Carlo tree search for Bayesian reinforcement learning
    Ngo Anh Vien
    Ertel, Wolfgang
    Viet-Hung Dang
    Chung, TaeChoong
    APPLIED INTELLIGENCE, 2013, 39 (02) : 345 - 353
  • [10] Monte-Carlo tree search for Bayesian reinforcement learning
    Ngo Anh Vien
    Wolfgang Ertel
    Viet-Hung Dang
    TaeChoong Chung
    Applied Intelligence, 2013, 39 : 345 - 353