Mortar multiscale finite element methods for Stokes-Darcy flows

被引:63
作者
Girault, Vivette [1 ,2 ,3 ]
Vassilev, Danail [4 ]
Yotov, Ivan [5 ]
机构
[1] Univ Paris 06, F-75230 Paris 05, France
[2] CNRS, UMR 7598, F-75230 Paris 05, France
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Univ Exeter, Coll Engn Math & Phys Sci, Math Res Inst, Exeter EX4 4QF, Devon, England
[5] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
POROUS-MEDIA FLOW; DOMAIN DECOMPOSITION METHOD; COUPLING FLUID-FLOW; ELLIPTIC PROBLEMS; LAGRANGIAN-MULTIPLIERS; BOUNDARY-CONDITIONS; NONMATCHING GRIDS; EQUATIONS; APPROXIMATION; MODELS;
D O I
10.1007/s00211-013-0583-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate mortar multiscale numerical methods for coupled Stokes and Darcy flows with the Beavers-Joseph-Saffman interface condition. The domain is decomposed into a series of subdomains (coarse grid) of either Stokes or Darcy type. The subdomains are discretized by appropriate Stokes or Darcy finite elements. The solution is resolved locally (in each coarse element) on a fine scale, allowing for non-matching grids across subdomain interfaces. Coarse scale mortar finite elements are introduced on the interfaces to approximate the normal stress and impose weakly continuity of the normal velocity. Stability and a priori error estimates in terms of the fine subdomain scale h and the coarse mortar scale H are established for fairly general grid configurations, assuming that the mortar space satisfies a certain inf-sup condition. Several examples of such spaces in two and three dimensions are given. Numerical experiments are presented in confirmation of the theory.
引用
收藏
页码:93 / 165
页数:73
相关论文
共 60 条
[11]   Mixed mortar finite element method for the incompressible stokes problem: Convergence analysis [J].
Ben Belgacem, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1085-1100
[12]   A stabilized domain decomposition method with nonmatching grids for the Stokes problem in three dimensions [J].
Ben Belgacem, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :667-685
[13]  
Bernardi C., 1994, COLL FRANCE SEMINAR, VXI, P13
[14]   Mortar finite element discretization of a model coupling Darcy and Stokes equations [J].
Bernardi, Christine ;
Rebollo, Tomas Chacon ;
Hecht, Frederic ;
Mghazli, Zoubida .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03) :375-410
[15]  
Brenner SC, 2004, MATH COMPUT, V73, P1067
[16]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324
[17]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[18]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[19]   A unified stabilized method for Stokes' and Darcy's equations [J].
Burman, Erik ;
Hansbo, Peter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (01) :35-51
[20]   FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Cao, Yanzhao ;
Gunzburger, Max ;
Hu, Xiaolong ;
Hua, Fei ;
Wang, Xiaoming ;
Zhao, Weidong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4239-4256