Entanglement in fermionic chains with finite-range coupling and broken symmetries

被引:41
作者
Ares, Filiberto [1 ]
Esteve, Jose G. [1 ,2 ]
Falceto, Fernando [1 ,2 ]
de Queiroz, Amilcar R. [1 ,3 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Inst Biocomputac & Fis Sistemas Complejos BIFI, Zaragoza 50009, Spain
[3] Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 04期
关键词
QUANTUM SPIN CHAINS; TOEPLITZ DETERMINANTS; FIELD-THEORY; ENTROPY; MATRICES;
D O I
10.1103/PhysRevA.92.042334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We obtain a formula for the determinant of a block Toeplitz matrix associated with a quadratic fermionic chain with complex coupling. Such couplings break reflection symmetry and/or charge conjugation symmetry. We then apply this formula to compute the Renyi entropy of a partial observation to a subsystem consisting of contiguous sites in the limit of large size. The present work generalizes similar results due to Its, Jin, and Korepin [Fields Institute Communications, Universality and Renormalization, Vol. 50, p. 151, 2007] and Its, Mezzadri, and Mo [Commun. Math. Phys. 284, 117 (2008)]. A striking feature of our formula for the entanglement entropy is the appearance of a term scaling with the logarithm of the size. This logarithmic behavior originates from certain discontinuities in the symbol of the block Toeplitz matrix. Equipped with this formula we analyze the entanglement entropy of a Dzyaloshinski-Moriya spin chain and a Kitaev fermionic chain with long-range pairing.
引用
收藏
页数:11
相关论文
共 23 条
[1]   Entanglement entropy of excited states [J].
Alba, Vincenzo ;
Fagotti, Maurizio ;
Calabrese, Pasquale .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[2]   Excited state entanglement in homogeneous fermionic chains [J].
Ares, F. ;
Esteve, J. G. ;
Falceto, F. ;
Sanchez-Burillo, E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (24)
[3]   Entanglement of several blocks in fermionic chains [J].
Ares, Filiberto ;
Esteve, Jose G. ;
Falceto, Fernando .
PHYSICAL REVIEW A, 2014, 90 (06)
[4]   Algebraic approach to entanglement and entropy [J].
Balachandran, A. P. ;
Govindarajan, T. R. ;
de Queiroz, Amilcar R. ;
Reyes-Lega, A. F. .
PHYSICAL REVIEW A, 2013, 88 (02)
[5]   Entanglement and Particle Identity: A Unifying Approach [J].
Balachandran, A. P. ;
Govindarajan, T. R. ;
de Queiroz, Amilcar R. ;
Reyes-Lega, A. F. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[6]   LOCALIZATION THEOREM FOR TOEPLITZ DETERMINANTS [J].
BASOR, EL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (06) :975-983
[7]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[8]   Majorana fermions in superconducting wires: Effects of long-range hopping, broken time-reversal symmetry, and potential landscapes [J].
DeGottardi, Wade ;
Thakurathi, Manisha ;
Vishveshwara, Smitha ;
Sen, Diptiman .
PHYSICAL REVIEW B, 2013, 88 (16)
[9]   Toeplitz Matrices and Toeplitz Determinants under the Impetus of the Ising Model: Some History and Some Recent Results [J].
Deift, Percy ;
Its, Alexander ;
Krasovsky, Igor .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (09) :1360-1438
[10]   Renyi entropy of the XY spin chain [J].
Franchini, F. ;
Its, A. R. ;
Korepin, V. E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (02)