On generic polynomials for the modular 2-groups

被引:2
作者
Rikuna, Y [1 ]
机构
[1] Waseda Univ, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan
关键词
inverse Galois problem; Noether's problem; generic polynomials; modular; 2-groups;
D O I
10.3792/pjaa.78.33
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a generic polynomial for Mod(2n+2), the modular 2-group of order 2(n+2), with two parameters over the 2(n)-th cyclotomic field k. Our construction is based on an explicit answer for linear Noether's problem. This polynomial, which has a remarkably simple expression, gives every Mod(2n+2)-extension L/K with K superset of k, #K = infinity by specialization of the parameters. Moreover, we derive a new generic polynomial for the cyclic group of order 2(n+1) from our construction.
引用
收藏
页码:33 / 35
页数:3
相关论文
共 6 条
[1]  
Hashimoto K, 1999, DEV MATH, V2, P165
[2]  
HASHIMOTO K, IN PRESS MANUSCRIPTA
[3]   A constructive approach to Noether's Problem [J].
Kemper, G .
MANUSCRIPTA MATHEMATICA, 1996, 90 (03) :343-363
[4]   Generic polynomials with few parameters [J].
Kemper, G ;
Mattig, E .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (06) :843-857
[5]  
RIKUNA Y, IN PRESS P AM MATH S
[6]  
Smith Larry, 1995, Research Notes in Mathematics, V6