Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties

被引:89
作者
Mueller, Lucas O. [1 ]
Pares, Carlos [2 ]
Toro, Eleuterio F. [1 ]
机构
[1] Univ Trento, Lab Appl Math, Trento, Italy
[2] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
关键词
One-dimensional blood flow; Arterial flow; Venous flow; Variable mechanical properties; Non-conservative hyperbolic systems; Path-conservative schemes; High-order schemes; Well-balanced schemes; GENERALIZED RIEMANN PROBLEM; FINITE-VOLUME; HYDROSTATIC RECONSTRUCTION; HYPERBOLIC SYSTEMS; WAVE-PROPAGATION; MODEL;
D O I
10.1016/j.jcp.2013.01.050
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We construct well-balanced, high-order numerical schemes for one-dimensional blood flow in elastic vessels with varying mechanical properties. We adopt the ADER (Arbitrary high-order DERivatives) finite volume framework, which is based on three building blocks: a first-order monotone numerical flux, a non-linear spatial reconstruction operator and the solution of the Generalised (or high-order) Riemann Problem. Here, we first construct a well-balanced first-order numerical flux following the Generalised Hydrostatic Reconstruction technique. Then, a conventional non-linear spatial reconstruction operator and the local solver for the Generalised Riemann Problem are modified in order to preserve well-balanced properties. A carefully chosen suit of test problems is used to systematically assess the proposed schemes and to demonstrate that well-balanced properties are mandatory for obtaining correct numerical solutions for both steady and time-dependent problems. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 85
页数:33
相关论文
共 30 条
[1]   Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements [J].
Alastruey, Jordi ;
Khir, Ashraf W. ;
Matthys, Koen S. ;
Segers, Patrick ;
Sherwin, Spencer J. ;
Verdonck, Pascal R. ;
Parker, Kim H. ;
Peiro, Joaquim .
JOURNAL OF BIOMECHANICS, 2011, 44 (12) :2250-2258
[2]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[3]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[4]   Assessing the influence of heart rate in local hemodynamics through coupled 3D-1D-0D models [J].
Blanco, P. J. ;
Urquiza, S. A. ;
Feijoo, R. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (07) :890-903
[5]  
Botta N, 2004, J COMPUT PHYS, V196, P539, DOI 10.1016/j.icp.2003.11.008
[6]   Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state [J].
Brook, BS ;
Falle, SAEG ;
Pedley, TJ .
JOURNAL OF FLUID MECHANICS, 1999, 396 :223-256
[7]   Well-balanced high order extensions of Godunov's method for semilinear balance laws [J].
Castro, Manuel ;
Gallardo, Jose M. ;
Lopez-Garcia, Juan A. ;
Pares, Carlos .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :1012-1039
[8]   Why many theories of shock waves are necessary:: Convergence error in formally path-consistent schemes [J].
Castro, Manuel J. ;
LeFloch, Philippe G. ;
Munoz-Ruiz, Maria Luz ;
Pares, Carlos .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (17) :8107-8129
[9]   Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique [J].
Castro, Manuel J. ;
Milanes, Alberto Pardo ;
Pares, Carlos .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (12) :2055-2113
[10]  
DalMaso G, 1995, J MATH PURE APPL, V74, P483