Star Formation and Morphological Properties of Galaxies in the Pan-STARRS 3πSurvey. I. A Machine-learning Approach to Galaxy and Supernova Classification

被引:14
作者
Baldeschi, A. [1 ,2 ]
Miller, A. [1 ,2 ,3 ]
Stroh, M. [1 ,2 ]
Margutti, R. [1 ,2 ,4 ]
Coppejans, D. L. [1 ,2 ]
机构
[1] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys CI, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[3] Adler Planetarium, Chicago, IL 60605 USA
[4] CIFAR, CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Classification; Supernovae; Core-collapse supernovae; Type Ia supernovae; Random Forests; DIGITAL SKY SURVEY; PHOTOMETRIC CLASSIFICATION; DATA RELEASE; ZOO; ENVIRONMENT; PROFILES; CATALOG; SEARCH; SAMPLE; COLOR;
D O I
10.3847/1538-4357/abb1c0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a classification of galaxies in the Pan-STARRS1 (PS1) 3 pi survey based on their recent star formation history and morphology. Specifically, we train and test two Random Forest (RF) classifiers using photometric features (colors and moments) from the PS1 data release 2. The labels for the morphological classification are taken from Huertas-Company et al., while labels for the star formation fraction (SFF) are from the Blanton et al. catalog. We find that colors provide more predictive accuracy than photometric moments. We morphologically classify galaxies as either early- or late-type, and our RF model achieves a 78% classification accuracy. Our second model classifies galaxies as having either a low-to-moderate or high SFF. This model achieves an 89% classification accuracy. We apply both RF classifiers to the entire PS1 3 pi dataset, which allows us to assign two scores to each PS1 source:P-HSFF, which quantifies the probability of having a high SFF; andP(spiral), which quantifies the probability of having a late-type morphology. Finally, as a proof of concept, we apply our classification framework to supernova (SN) host galaxies from the Zwicky Transient Factory and the Lick Observatory Supernova Search samples. We show that by selectingP(HSFF)orP(spiral), it is possible to significantly enhance or suppress the fraction of core-collapse SNe (or thermonuclear SNe) in the sample with respect to random guessing. This result demonstrates how contextual information can aid transient classifications at the time of first detection. In the current era of spectroscopically starved time-domain astronomy, prompt automated classification is paramount. Our table is available at10.5281/zenodo.3990545.
引用
收藏
页数:17
相关论文
共 73 条
[41]   Galaxy Zoo: passive red spirals☆ [J].
Masters, Karen L. ;
Mosleh, Moein ;
Romer, A. Kathy ;
Nichol, Robert C. ;
Bamford, Steven P. ;
Schawinski, Kevin ;
Lintott, Chris J. ;
Andreescu, Dan ;
Campbell, Heather C. ;
Crowcroft, Ben ;
Doyle, Isabelle ;
Edmondson, Edward M. ;
Murray, Phil ;
Raddick, M. Jordan ;
Slosar, Anze ;
Szalay, Alexander S. ;
Vandenberg, Jan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 405 (02) :783-799
[42]   Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning [J].
Moeller, A. ;
Ruhlmann-Kleider, V. ;
Leloup, C. ;
Neveu, J. ;
Palanque-Delabrouille, N. ;
Rich, J. ;
Carlberg, R. ;
Lidman, C. ;
Pritchet, C. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (12)
[43]   SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification [J].
Moller, A. ;
de Boissiere, T. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 491 (03) :4277-4293
[44]  
Moss A., 2018, ARXIV181006441
[45]   RAPID: Early Classification of Explosive Transients Using Deep Learning [J].
Muthukrishna, Daniel ;
Narayan, Gautham ;
Mandel, Kaisey S. ;
Biswas, Rahul ;
Hlozek, Renee .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2019, 131 (1005)
[46]   Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream [J].
Narayan, Gautham ;
Zaidi, Tayeb ;
Soraisam, Monika D. ;
Wang, Zhe ;
Lochner, Michelle ;
Matheson, Thomas ;
Saha, Abhijit ;
Yang, Shuo ;
Zhao, Zhenge ;
Kececioglu, John ;
Scheidegger, Carlos ;
Snodgrass, Richard T. ;
Axelrod, Tim ;
Jenness, Tim ;
Maier, Robert S. ;
Ridgway, Stephen T. ;
Seaman, Robert L. ;
Evans, Eric Michael ;
Singh, Navdeep ;
Taylor, Clark ;
Toeniskoetter, Jackson ;
Welch, Eric ;
Zhu, Songzhe .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 236 (01)
[47]   Statistical classification techniques for photometric supernova typing [J].
Newling, J. ;
Varughese, M. ;
Bassett, B. ;
Campbell, H. ;
Hlozek, R. ;
Kunz, M. ;
Lampeitl, H. ;
Martin, B. ;
Nichol, R. ;
Parkinson, D. ;
Smith, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 414 (03) :1987-2004
[48]  
Ntampaka M., 2019, Bull. Am. Astron. Soc, V51, P14, DOI DOI 10.3847/1538-4357/AB14EB
[49]   PELICAN: deeP architecturE for the LIght Curve ANalysis [J].
Pasquet, Johanna ;
Pasquet, Jerome ;
Chaumont, Marc ;
Fouchez, Dominique .
ASTRONOMY & ASTROPHYSICS, 2019, 627
[50]   Rapidly evolving transients in the Dark Energy Survey [J].
Pursiainen, M. ;
Childress, M. ;
Smith, M. ;
Prajs, S. ;
Sullivan, M. ;
Davis, T. M. ;
Foley, R. J. ;
Asorey, J. ;
Calcino, J. ;
Carollo, D. ;
Curtin, C. ;
D'Andrea, C. B. ;
Glazebrook, K. ;
Gutierrez, C. ;
Hinton, S. R. ;
Hoormann, J. K. ;
Inserra, C. ;
Kessler, R. ;
King, A. ;
Kuehn, K. ;
Lewis, G. F. ;
Lidman, C. ;
Macaulay, E. ;
Moller, A. ;
Nichol, R. C. ;
Sako, M. ;
Sommer, N. E. ;
Swann, E. ;
Tucker, B. E. ;
Uddin, S. A. ;
Wiseman, P. ;
Zhang, B. ;
Abbott, T. M. C. ;
Abdalla, F. B. ;
Allam, S. ;
Annis, J. ;
Avila, S. ;
Brooks, D. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Rosell, A. Carnero ;
Kind, M. Carrasco ;
Carretero, J. ;
Castander, F. J. ;
Cunha, C. E. ;
Davis, C. ;
De Vicente, J. ;
Diehl, H. T. ;
Doel, P. ;
Eifler, T. F. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (01) :894-917