First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires

被引:30
作者
Ning, Feng
Tang, Li-Ming [1 ]
Zhang, Yong
Chen, Ke-Qiu
机构
[1] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; AB-INITIO; III-V; GROWTH; PASSIVATION; ZINCBLENDE; MECHANISM; MOBILITY; WIRES;
D O I
10.1063/1.4842735
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have used first principles methods to systematically investigate the quantum confinement effect on the electronic properties of zinc-blende (ZB) and wurtzite (WZ) InAs nanowires (NWs) with different orientations and diameters, and compared their electronic properties before and after pseudo-hydrogen passivation. The results show that the calculated carrier effective masses are dependent on the NW diameter, except for [110] ZB NWs, and the hole effective masses of [111] ZB NWs are larger than the electron effective masses when the NW diameter is >= 26 angstrom. The band alignments of [111] ZB and [0001] WZ NWs reveal that the effect of quantum confinement on the conduction bands is greater than on the valence bands, and the position of the valence band maximum level changes little with increasing NW diameter. The pseudo-hydrogen passivated NWs have larger band gaps than the corresponding unpassivated NWs. The carrier effective masses and mobilities can be adjusted by passivating the surface dangling bonds. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 52 条
[1]   Optical properties of semiconductors using projector-augmented waves -: art. no. 125108 [J].
Adolph, B ;
Furthmüller, J ;
Bechstedt, F .
PHYSICAL REVIEW B, 2001, 63 (12)
[2]   Electronic Properties and Orientation-Dependent Performance of InAs Nanowire Transistors [J].
Alam, Khairul ;
Sajjad, Redwan N. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (11) :2880-2885
[3]   Quantum confinement energies in zinc-blende III-V and group IV semiconductors [J].
Allan, G ;
Niquet, YM ;
Delerue, C .
APPLIED PHYSICS LETTERS, 2000, 77 (05) :639-641
[4]   Bridging dimensions: Demultiplexing ultrahigh-density nanowire circuits [J].
Beckman, R ;
Johnston-Halperin, E ;
Luo, Y ;
Green, JE ;
Heath, JR .
SCIENCE, 2005, 310 (5747) :465-468
[5]   Elastic and Piezoelectric Properties of Zincblende and Wurtzite Crystalline Nanowire Heterostructures [J].
Boxberg, Fredrik ;
Sondergaard, Niels ;
Xu, H. Q. .
ADVANCED MATERIALS, 2012, 24 (34) :4692-4706
[6]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[7]   Effect of defects on the thermal conductivity in a nanowire [J].
Chen, KQ ;
Li, WX ;
Duan, W ;
Shuai, Z ;
Gu, BL .
PHYSICAL REVIEW B, 2005, 72 (04)
[8]   GaAs Core-Shell Nanowires for Photovoltaic Applications [J].
Czaban, Josef A. ;
Thompson, David A. ;
LaPierre, Ray R. .
NANO LETTERS, 2009, 9 (01) :148-154
[9]   III-V nanowire growth mechanism: V/III ratio and temperature effects [J].
Dayeh, Shadi A. ;
Yu, Edward T. ;
Wang, Deli .
NANO LETTERS, 2007, 7 (08) :2486-2490
[10]   Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires [J].
Dayeh, Shadi A. ;
Susac, Darija A. ;
Kavanagh, Karen L. ;
Yu, Edward T. ;
Wang, Deli .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (13) :2102-2108