Mid-upper tropospheric methane retrieval from IASI and its validation

被引:37
作者
Xiong, X. [1 ,2 ,3 ]
Barnet, C. [3 ]
Maddy, E. S. [3 ,4 ]
Gambacorta, A. [1 ,2 ,3 ]
King, T. S. [1 ,2 ,3 ]
Wofsy, S. C. [5 ]
机构
[1] IMSG, College Pk, MD USA
[2] NOAA, Ctr Satellite Applicat & Res, College Pk, MD USA
[3] NOAA, Natl Environm Satellite Data & Informat Serv, College Pk, MD USA
[4] Sci & Technol Corp, Langley, VA USA
[5] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
关键词
ATMOSPHERIC METHANE; VERTICAL RESOLUTION; SOUTH-ASIA; SATELLITE; MODEL; CH4; AIRS/AMSU/HSB; PROFILES; SPACE; SCALE;
D O I
10.5194/amt-6-2255-2013
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Mid-upper tropospheric methane (CH4), as an operational product at NOAA's (National Oceanic and Atmospheric Administration) Comprehensive Large Array-data Stewardship System (CLASS), has been retrieved from the Infrared Atmospheric Sounding Interferometer (IASI) since 2008. This paper provides a description of the retrieval method and the validation using 596 CH4 vertical profiles from aircraft measurements by the HIAPER Pole-to-Pole Observations (HIPPO) program over the Pacific Ocean. The number of degrees of freedom for the CH4 retrieval is mostly less than 1.5, and it decreases under cloudy conditions. The retrievals show greatest sensitivity between 100-600 hPa in the tropics and 200-750 hPa in the mid-to high latitude. Validation is accomplished using aircraft measurements (convolved by applying the monthly mean averaging kernels) collocated with all the retrieved profiles within 200 km and on the same day, and the results show that, on average, a larger error of CH4 occurs at 300-500 hPa. The bias in the trapezoid of 374-477 hPa is -1.74% with a residual standard deviation of 1.20%, and at layer 596-753 hPa the bias is -0.69% with a residual standard deviation of 1.07 %. The retrieval error is relatively larger in the high northern latitude regions and/or under cloudy conditions. The main reasons for this negative bias include the uncertainty in the spectroscopy near the methane Q branch and/or the empirical bias correction, plus residual cloud contamination in the cloud-cleared radiances. It is expected for NOAA to generate the CH4 product for 20 + years using a similar algorithm from three similar thermal infrared sensors: Atmospheric Infrared Sounder (AIRS), IASI and the Cross-track Infrared Sounder (CrIS). Such a unique product will provide a supplementary to the current ground-based observation network, particularly in the Arctic, for monitoring the CH4 cycle, its transport and trend associated with climate change.
引用
收藏
页码:2255 / 2265
页数:11
相关论文
共 45 条
  • [1] [Anonymous], 2006, GEOPHYS RES LETT, DOI DOI 10.1029/2006GL027484
  • [2] AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems
    Aumann, HH
    Chahine, MT
    Gautier, C
    Goldberg, MD
    Kalnay, E
    McMillin, LM
    Revercomb, H
    Rosenkranz, PW
    Smith, WL
    Staelin, DH
    Strow, LL
    Susskind, J
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02): : 253 - 264
  • [3] Contribution of anthropogenic and natural sources to atmospheric methane variability
    Bousquet, P.
    Ciais, P.
    Miller, J. B.
    Dlugokencky, E. J.
    Hauglustaine, D. A.
    Prigent, C.
    Van der Werf, G. R.
    Peylin, P.
    Brunke, E. -G.
    Carouge, C.
    Langenfelds, R. L.
    Lathiere, J.
    Papa, F.
    Ramonet, M.
    Schmidt, M.
    Steele, L. P.
    Tyler, S. C.
    White, J.
    [J]. NATURE, 2006, 443 (7110) : 439 - 443
  • [4] Source attribution of the changes in atmospheric methane for 2006-2008
    Bousquet, P.
    Ringeval, B.
    Pison, I.
    Dlugokencky, E. J.
    Brunke, E. -G.
    Carouge, C.
    Chevallier, F.
    Fortems-Cheiney, A.
    Frankenberg, C.
    Hauglustaine, D. A.
    Krummel, P. B.
    Langenfelds, R. L.
    Ramonet, M.
    Schmidt, M.
    Steele, L. P.
    Szopa, S.
    Yver, C.
    Viovy, N.
    Ciais, P.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (08) : 3689 - 3700
  • [5] MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description
    Brasseur, GP
    Hauglustaine, DA
    Walters, S
    Rasch, PJ
    Muller, JF
    Granier, C
    Tie, XX
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D21) : 28265 - 28289
  • [6] Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model
    Chen, Yu-Han
    Prinn, Ronald G.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D10)
  • [7] Trace gas measurements from infrared satellite for chemistry and climate applications
    Clerbaux, C
    Hadji-Lazaro, J
    Turquety, S
    Mégie, G
    Coheur, PF
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2003, 3 : 1495 - 1508
  • [8] The 2007-2011 evolution of tropical methane in the mid-troposphere as seen from space by MetOp-A/IASI
    Crevoisier, C.
    Nobileau, D.
    Armante, R.
    Crepeau, L.
    Machida, T.
    Sawa, Y.
    Matsueda, H.
    Schuck, T.
    Thonat, T.
    Pernin, J.
    Scott, N. A.
    Chedin, A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (08) : 4279 - 4289
  • [9] Tropospheric methane in the tropics - first year from IASI hyperspectral infrared observations
    Crevoisier, C.
    Nobileau, D.
    Fiore, A. M.
    Armante, R.
    Chedin, A.
    Scott, N. A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (17) : 6337 - 6350
  • [10] Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere
    De Maziere, M.
    Vigouroux, C.
    Bernath, P. F.
    Baron, P.
    Blumenstock, T.
    Boone, C.
    Brogniez, C.
    Catoire, V.
    Coffey, M.
    Duchatelet, P.
    Griffith, D.
    Hannigan, J.
    Kasai, Y.
    Kramer, I.
    Jones, N.
    Mahieu, E.
    Manney, G. L.
    Piccolo, C.
    Randall, C.
    Robert, C.
    Senten, C.
    Strong, K.
    Taylor, J.
    Tetard, C.
    Walker, K. A.
    Wood, S.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (09) : 2421 - 2435