Multiple normalized solutions for quasi-linear Schrodinger equations

被引:79
作者
Jeanjean, Louis [1 ]
Luo, Tingjian [1 ,2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Univ Franche Comte, Math Lab, UMR 6623, F-25030 Besancon, France
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
L-2-normalized solutions; Liouville type results; Quasi-linear Schrodinger equations; Perturbation method; SCALAR FIELD-EQUATIONS; ELLIPTIC-EQUATIONS; GROUND-STATES; STANDING WAVES; SOLITON-SOLUTIONS; PRESCRIBED NORM; EXISTENCE; POISSON; INSTABILITY; UNIQUENESS;
D O I
10.1016/j.jde.2015.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence of two solutions having a prescribed L-2-norm for a quasi-linear Schrodinger equation. One of these solutions is a mountain pass solution relative to a constraint and the other one a minimum either local or global. To overcome the lack of differentiability of the associated functional, we rely on a perturbation method developed in [25]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3894 / 3928
页数:35
相关论文
共 50 条
[41]   A priori estimates for the difference of solutions to quasi-linear elliptic equations [J].
Biegert, Markus .
MANUSCRIPTA MATHEMATICA, 2010, 133 (3-4) :273-306
[42]   Existence of bounded positive solutions of quasi-linear elliptic equations [J].
Yuan, Junli ;
Yang, Zuodong .
APPLICABLE ANALYSIS, 2010, 89 (08) :1229-1239
[43]   Positive solutions of quasi-linear elliptic equations with dependence on the gradient [J].
Faraci, F. ;
Motreanu, D. ;
Puglisi, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :525-538
[44]   Multiple normalized solutions for a planar gauged nonlinear Schrodinger equation [J].
Luo, Xiao .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03)
[45]   MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF QUASI-LINEAR ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
Fan, Haining ;
Liu, Xiaochun .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (04) :1111-1126
[46]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[47]   Normalized multibump solutions to nonlinear Schrodinger equations with steep potential well [J].
Tang, Zhongwei ;
Zhang, Chengxiang ;
Zhang, Luyu ;
Zhou, Luyan .
NONLINEARITY, 2022, 35 (08) :4624-4658
[48]   NORMALIZED SOLUTIONS TO THE MIXED DISPERSION NONLINEAR SCHRODINGER EQUATION IN THE MASS CRITICAL AND SUPERCRITICAL REGIME [J].
Bonheure, Denis ;
Casteras, Jean-Baptiste ;
Gou, Tianxiang ;
Jeanjean, Louis .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) :2167-2212
[49]   MULTIPLE SOLUTIONS OF SUBLINEAR QUASILINEAR SCHRODINGER EQUATIONS WITH SMALL PERTURBATIONS [J].
Zhang, Liang ;
Tang, X. H. ;
Chen, Yi .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (02) :471-488
[50]   Normalized solutions for nonautonomous Schrodinger-Poisson equations [J].
Xu, Yating ;
Luo, Huxiao .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03)