Multiple normalized solutions for quasi-linear Schrodinger equations

被引:79
作者
Jeanjean, Louis [1 ]
Luo, Tingjian [1 ,2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Univ Franche Comte, Math Lab, UMR 6623, F-25030 Besancon, France
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
L-2-normalized solutions; Liouville type results; Quasi-linear Schrodinger equations; Perturbation method; SCALAR FIELD-EQUATIONS; ELLIPTIC-EQUATIONS; GROUND-STATES; STANDING WAVES; SOLITON-SOLUTIONS; PRESCRIBED NORM; EXISTENCE; POISSON; INSTABILITY; UNIQUENESS;
D O I
10.1016/j.jde.2015.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence of two solutions having a prescribed L-2-norm for a quasi-linear Schrodinger equation. One of these solutions is a mountain pass solution relative to a constraint and the other one a minimum either local or global. To overcome the lack of differentiability of the associated functional, we rely on a perturbation method developed in [25]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3894 / 3928
页数:35
相关论文
共 50 条
[31]   Multiple positive normalized solutions for nonlinear Schrodinger systems [J].
Gou, Tianxiang ;
Jeanjean, Louis .
NONLINEARITY, 2018, 31 (05) :2319-2345
[32]   Normalized solutions to Schrodinger equations with potential and inhomogeneous nonlinearities on large smooth domains [J].
Bartsch, Thomas ;
Qi, Shijie ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2024, 390 (03) :4813-4859
[33]   Normalized solutions to nonlinear Schrodinger equations with competing Hartree-type nonlinearities [J].
Bhimani, Divyang ;
Gou, Tianxiang ;
Hajaiej, Hichem .
MATHEMATISCHE NACHRICHTEN, 2024, 297 (07) :2543-2580
[34]   Concentration and multiple normalized solutions for a class of biharmonic Schrodinger equations [J].
Wang, Li ;
Tian, Liang ;
Chen, Jianhua .
ASYMPTOTIC ANALYSIS, 2025, 143 (04) :968-989
[35]   Normalized solutions for L2-supercritical Schrodinger equations [J].
Jin, Peng ;
Tang, Xianhua .
APPLIED MATHEMATICS LETTERS, 2025, 160
[36]   Multiple normalized solutions for Schrodinger-Maxwell equation with Sobolev critical exponent and mixed nonlinearities [J].
Kang, Jin-Cai ;
Li, Yong-Yong ;
Tang, Chun-Lei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 443
[37]   Asymptotic behavior of multiple solutions for quasilinear Schrodinger equations [J].
Zhang, Xian ;
Huang, Chen .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (64) :1-28
[38]   Multiple normalized solutions for a Sobolev critical Schrodinger-Poisson-Slater equation [J].
Jeanjean, Louis ;
Le, Thanh Trung .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 303 :277-325
[39]   SOLUTIONS TO QUASI-LINEAR DIFFERENTIAL EQUATIONS WITH ITERATED DEVIATING ARGUMENTS [J].
Haloi, Rajib .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
[40]   BANG-BANG AND MULTIPLE VALUED OPTIMAL SOLUTIONS OF CONTROL PROBLEMS RELATED TO QUASI-LINEAR ELLIPTIC EQUATIONS [J].
Emamizadeh, Behrouz ;
Liu, Yichen .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (02) :1103-1117