Multiple normalized solutions for quasi-linear Schrodinger equations

被引:79
作者
Jeanjean, Louis [1 ]
Luo, Tingjian [1 ,2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Univ Franche Comte, Math Lab, UMR 6623, F-25030 Besancon, France
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
L-2-normalized solutions; Liouville type results; Quasi-linear Schrodinger equations; Perturbation method; SCALAR FIELD-EQUATIONS; ELLIPTIC-EQUATIONS; GROUND-STATES; STANDING WAVES; SOLITON-SOLUTIONS; PRESCRIBED NORM; EXISTENCE; POISSON; INSTABILITY; UNIQUENESS;
D O I
10.1016/j.jde.2015.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence of two solutions having a prescribed L-2-norm for a quasi-linear Schrodinger equation. One of these solutions is a mountain pass solution relative to a constraint and the other one a minimum either local or global. To overcome the lack of differentiability of the associated functional, we rely on a perturbation method developed in [25]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3894 / 3928
页数:35
相关论文
共 50 条
[21]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[22]   Multiple normalized solutions of Chern-Simons-Schrodinger system [J].
Yuan, Jianjun .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06) :1801-1816
[23]   Normalized Ground States and Multiple Solutions for Nonautonomous Fractional Schrodinger Equations [J].
Yang, Chen ;
Yu, Shu-Bin ;
Tang, Chun-Lei .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)
[24]   Localization of normalized solutions for saturable nonlinear Schrodinger equations [J].
Wang, Xiaoming ;
Wang, Zhi-Qiang ;
Zhang, Xu .
SCIENCE CHINA-MATHEMATICS, 2023, 66 (11) :2495-2522
[25]   A quasi-linear Schrodinger equation with indefinite potential [J].
Maia, L. A. ;
Oliveira Junior, J. C. ;
Ruviaro, R. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (04) :574-586
[26]   Normalized solutions for Schrodinger equations with mixed dispersion and critical exponential growth in R2 [J].
Chen, Sitong ;
Tang, Xianhua .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (09)
[27]   Mountain Pass solutions for quasi-linear equations via a monotonicity trick [J].
Pellacci, Benedetta ;
Squassina, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :857-865
[28]   Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations [J].
Bendahmane, M ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) :405-422
[29]   EXPLOSIVE SOLUTIONS OF QUASI-LINEAR ELLIPTIC-EQUATIONS - EXISTENCE AND UNIQUENESS [J].
DIAZ, G ;
LETELIER, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (02) :97-125
[30]   On the initial value problem for the one dimensional quasi-linear Schrodinger equations [J].
Lim, WK ;
Ponce, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (02) :435-459