Multiple normalized solutions for quasi-linear Schrodinger equations

被引:78
作者
Jeanjean, Louis [1 ]
Luo, Tingjian [1 ,2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Univ Franche Comte, Math Lab, UMR 6623, F-25030 Besancon, France
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
L-2-normalized solutions; Liouville type results; Quasi-linear Schrodinger equations; Perturbation method; SCALAR FIELD-EQUATIONS; ELLIPTIC-EQUATIONS; GROUND-STATES; STANDING WAVES; SOLITON-SOLUTIONS; PRESCRIBED NORM; EXISTENCE; POISSON; INSTABILITY; UNIQUENESS;
D O I
10.1016/j.jde.2015.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence of two solutions having a prescribed L-2-norm for a quasi-linear Schrodinger equation. One of these solutions is a mountain pass solution relative to a constraint and the other one a minimum either local or global. To overcome the lack of differentiability of the associated functional, we rely on a perturbation method developed in [25]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3894 / 3928
页数:35
相关论文
共 50 条
[1]   MULTIPLE NORMALIZED SOLUTIONS FOR A QUASI-LINEAR SCHRODINGER EQUATION VIA DUAL APPROACH [J].
Zhang, Lin ;
Li, Yongqing ;
Wang, Zhi-qiang .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (01) :465-489
[2]   QUASILINEAR SCHRODINGER EQUATIONS: GROUND STATE AND INFINITELY MANY NORMALIZED SOLUTIONS [J].
Li, Houwang ;
Zou, Wenming .
PACIFIC JOURNAL OF MATHEMATICS, 2023, 322 (01) :99-138
[3]   NORMALIZED SOLUTIONS TO THE QUASILINEAR SCHRODINGER EQUATIONS WITH COMBINED NONLINEARITIES [J].
Mao, Anmin ;
Lu, Shuyao .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (02) :349-387
[4]   Multiple normalized solutions to Schrodinger equations in RN with critical growth and potential [J].
Xie, Zheng ;
Chen, Jing ;
Tan, Yawen .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (04)
[5]   On a bifurcation value related to quasi-linear Schrodinger equations [J].
Caliari, Marco ;
Squassina, Marco .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2012, 12 (1-2) :121-133
[6]   Multiple normalized solutions for a Sobolev critical Schrodinger equation [J].
Jeanjean, Louis ;
Thanh Trung Le .
MATHEMATISCHE ANNALEN, 2022, 384 (1-2) :101-134
[7]   Normalized Solutions to Schrodinger Equations with Critical Exponent and Mixed Nonlocal Nonlinearities [J].
Ding, Yanheng ;
Wang, Hua-Yang .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (07)
[8]   Normalized solutions of quasilinear Schrodinger equations with a general nonlinearity [J].
Deng, Ting ;
Squassina, Marco ;
Zhang, Jianjun ;
Zhong, Xuexiu .
ASYMPTOTIC ANALYSIS, 2024, 140 (1-2) :5-24
[9]   Multiplicity of Normalized Solutions for Schrodinger Equations [J].
Lv, Yan-Cheng ;
Li, Gui-Dong .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
[10]   Normalized solutions to the fractional Schrodinger equations with combined nonlinearities [J].
Luo, Haijun ;
Zhang, Zhitao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (04)