Multiple normalized solutions for quasi-linear Schrodinger equations

被引:80
作者
Jeanjean, Louis [1 ]
Luo, Tingjian [1 ,2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Univ Franche Comte, Math Lab, UMR 6623, F-25030 Besancon, France
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
L-2-normalized solutions; Liouville type results; Quasi-linear Schrodinger equations; Perturbation method; SCALAR FIELD-EQUATIONS; ELLIPTIC-EQUATIONS; GROUND-STATES; STANDING WAVES; SOLITON-SOLUTIONS; PRESCRIBED NORM; EXISTENCE; POISSON; INSTABILITY; UNIQUENESS;
D O I
10.1016/j.jde.2015.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence of two solutions having a prescribed L-2-norm for a quasi-linear Schrodinger equation. One of these solutions is a mountain pass solution relative to a constraint and the other one a minimum either local or global. To overcome the lack of differentiability of the associated functional, we rely on a perturbation method developed in [25]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3894 / 3928
页数:35
相关论文
共 32 条
[1]   Blow-up phenomena and asymptotic profiles of ground states of quasilinear elliptic equations with H1-supercritical nonlinearities [J].
Adachi, Shinji ;
Shibata, Masataka ;
Watanabe, Tatsuya .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) :1492-1514
[2]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[3]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[4]  
[Anonymous], COMMUNICATION
[5]  
[Anonymous], T AM MATH SOC
[6]   Multiple critical points for a class of nonlinear functionals [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (03) :507-523
[7]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[8]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]  
Cazenave T, 2003, Semilinear Schrodinger Equations