Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: Effect of solution chemistry and mechanism investigation

被引:46
|
作者
Shan, Chao [1 ,3 ]
Chen, Jiajia [1 ]
Yang, Zhe [1 ]
Jia, Huichao [1 ]
Guan, Xiaohong [2 ]
Zhang, Weiming [1 ,3 ]
Pan, Bingcai [1 ,3 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Jiangsu, Peoples R China
[2] Tongji Univ, State Key Lab Pollut Control & Resources Reuse, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
[3] Nanjing Univ, Res Ctr Environm Nanotechnol ReCENT, Nanjing 210023, Jiangsu, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划;
关键词
Selenate; ZVI; Corrosion; Hydrogen peroxide; Adsorption; Reduction; WEAK MAGNETIC-FIELD; NITRATE REDUCTION; ZEROVALENT IRON; SELENATE REMOVAL; AQUEOUS FE2+; ENVIRONMENTAL REMEDIATION; SELENITE REMOVAL; ELEMENTAL IRON; FERRIC-OXIDE; ADSORPTION;
D O I
10.1016/j.watres.2018.01.038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Although the removal of Se(VI) from water by using zero-valent iron (ZVI) is a promising method, passivation of ZVI severely inhibits its performance. To overcome such issue, we proposed an efficient technique to enhance Se(VI) removal via pre-corrosion of ZVI with H2O2/HCl in a short time (15 min). The resultant pcZVI suspension was weakly acidic (pH 4.56) and contained abundant aqueous Fe2+. Fe-57 Mossbauer spectroscopy showed that pcZVI mainly consisted of Fe-0 (66.2%), hydrated ferric oxide (26.3%), and Fe3O4 (7.5%). Efficient removal of Se(VI) from sulfate-rich solution was achieved by pcZVI compared with ZVI (in the absence and presence of H2O2) and acid-pretreated ZVI. Moreover, the efficient removal of Se(VI) by pcZVl sustained over a broad pH range (3-9) due to its strong buffering power. The presence of chloride, carbonate, nitrate, and common cations (Na+, K+, Ca2+, and Mg2+) posed negligible influence on the removal of Se(VI) by pcZVI, while the inhibitory effect induced by sulfate, silicate, and phosphate indicated the significance of Se(VI) adsorption as a prerequisite step for its removal. The consumption of aqueous Fe2+ was associated with Se(VI) removal, and X-ray absorption near edge structure revealed that the main pathway for Se(VI) removal by pcZVI was a stepwise reduction of Se(VI) to Se(IV) and then Se-0 as the dominant final state (78.2%). Moreover, higher electron selectivity of pcZVI was attributed to the enhanced enrichment of Se oxyanions prior to their reduction. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:173 / 181
页数:9
相关论文
共 32 条
  • [31] In-situ constructing an innovative and versatile nanotraps for incorporation of zero-valent iron nanoparticles into zeolite imidazole framework-8 towards high efficient detoxification and imprisonment of U(VI) and Se(IV) from water via a combination study of capture performance and underlying mechanism aspects
    Fan, Zheyu
    You, Yanran
    Ding, Kedan
    Sheng, Guodong
    Zhang, Xinyu
    Ma, Jingyuan
    Huang, Yuying
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [32] Rapid oxidation and deep As(III) purification from water using gelatin-supported iron-based metal-organic framework aerogel coupled with H2O2: Preparation, performance and mechanism
    Cai, Guiyuan
    Tian, Yu
    Li, Lipin
    Zhang, Jun
    Zuo, Wei
    Wang, Qinyu
    Liu, Tao
    Ma, Lina
    Zhang, Yifeng
    CHEMICAL ENGINEERING JOURNAL, 2024, 479