A multi-parametric programming approach for constrained dynamic programming problems

被引:21
作者
Faisca, Nuno P. [1 ]
Kouramas, Konstantinos I. [1 ]
Saraiva, Pedro M. [2 ]
Rustem, Berc [1 ]
Pistikopoulos, Efstratios N. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Ctr Proc Syst Engn, London SW7 2AZ, England
[2] Univ Coimbra, PSE Grp, P-3030290 Coimbra, Portugal
基金
英国工程与自然科学研究理事会;
关键词
Dynamic programming; Constrained multi-stage models; Parametric programming;
D O I
10.1007/s11590-007-0056-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we present a new algorithm for solving complex multi-stage optimization problems involving hard constraints and uncertainties, based on dynamic and multi-parametric programming techniques. Each echelon of the dynamic programming procedure, typically employed in the context of multi-stage optimization models, is interpreted as a multi-parametric optimization problem, with the present states and future decision variables being the parameters, while the present decisions the corresponding optimization variables. This reformulation significantly reduces the dimension of the original problem, essentially to a set of lower dimensional multi-parametric programs, which are sequentially solved. Furthermore, the use of sensitivity analysis circumvents non-convexities that naturally arise in constrained dynamic programming problems. The potential application of the proposed novel framework to robust constrained optimal control is highlighted.
引用
收藏
页码:267 / 280
页数:14
相关论文
共 19 条
[1]  
Apt Krzysztof., 2003, PRINCIPLES CONSTRAIN
[2]  
Basar T., 1998, Dynamic noncooperative game theory
[3]  
Bazaraa MokhtarS., 1979, Nonlinear Programming: Theory and Algorithms
[4]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[5]   Robust solutions of Linear Programming problems contaminated with uncertain data [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :411-424
[6]  
Bertsekas D.P., 2005, DYNAMIC PROGRAMMING, V1
[7]   Geometric algorithm for multiparametric linear programming [J].
Borrelli, F ;
Bemporad, A ;
Morari, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) :515-540
[8]   Dynamic programming for constrained optimal control of discrete-time linear hybrid systems [J].
Borrelli, F ;
Baotic, M ;
Bemporad, A ;
Morari, M .
AUTOMATICA, 2005, 41 (10) :1709-1721
[9]   Global optimization issues in multiparametric continuous and mixed-integer optimization problems [J].
Dua, V ;
Papalexandri, KP ;
Pistikopoulos, EN .
JOURNAL OF GLOBAL OPTIMIZATION, 2004, 30 (01) :59-89
[10]   A multiparametric programming approach for mixed-integer quadratic engineering problems [J].
Dua, V ;
Bozinis, NA ;
Pistikopoulos, EN .
COMPUTERS & CHEMICAL ENGINEERING, 2002, 26 (4-5) :715-733