Artificial Intelligence Accelerators Based on Graphene Optoelectronic Devices

被引:11
作者
Gao, Weilu [1 ]
Yu, Cunxi [1 ]
Chen, Ruiyang [1 ]
机构
[1] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
来源
ADVANCED PHOTONICS RESEARCH | 2021年 / 2卷 / 06期
关键词
artificial intelligence hardware accelerators; graphene; photodetectors; spatial light modulators;
D O I
10.1002/adpr.202100048
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical and optoelectronic approaches of performing matrix-vector multiplication (MVM) operations have shown the great promise of accelerating machine learning (ML) algorithms with unprecedented performance. The incorporation of nanomaterials into the system can further improve the device and system performance thanks to their extraordinary properties, but the nonuniformity and variation of nanostructures in the macroscopic scale pose severe limitations for large-scale hardware deployment. Here, a new optoelectronic architecture is presented, consisting of spatial light modulators and tunable responsivity photodetector arrays made from graphene to perform MVM. The ultrahigh carrier mobility of graphene, high-power-efficiency electro-optic control, and extreme parallelism suggest ultrahigh data throughput and ultralow energy consumption. Moreover, a methodology of performing accurate calculations with imperfect components is developed, laying the foundation for scalable systems. Finally, a few representative ML algorithms are demonstrated, including singular value decomposition, support vector machine, and deep neural networks, to show the versatility and generality of the platform.
引用
收藏
页数:9
相关论文
共 54 条
[1]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[2]  
[Anonymous], 2019, IEEE HIGH PERF EXTR, DOI [DOI 10.1109/hpec.2019.8916327, 10.1109/HPEC.2019.8916327]
[3]   Ultra-low contact resistance in graphene devices at the Dirac point [J].
Anzi, Luca ;
Mansouri, Aida ;
Pedrinazzi, Paolo ;
Guerriero, Erica ;
Fiocco, Marco ;
Pesquera, Amaia ;
Centeno, Alba ;
Zurutuza, Amaia ;
Behnam, Ashkan ;
Carrion, Enrique A. ;
Pop, Eric ;
Sordan, Roman .
2D MATERIALS, 2018, 5 (02)
[4]   An Always-On 3.8 μJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS [J].
Bankman, Daniel ;
Yang, Lita ;
Moons, Bert ;
Verhelst, Marian ;
Murmann, Boris .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) :158-172
[5]   Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Dauber, Jan ;
Oellers, Martin ;
Haupt, Federica ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
SCIENCE ADVANCES, 2015, 1 (06)
[6]   SMART-PIXEL SPATIAL LIGHT-MODULATOR FOR INCORPORATION IN AN OPTOELECTRONIC NEURAL-NETWORK [J].
BARTANA, I ;
SHARPE, JP ;
MCKNIGHT, DJ ;
JOHNSON, KM .
OPTICS LETTERS, 1995, 20 (03) :303-305
[7]  
Beletic J. W., 2008, HIGH ENERGY OPTICAL, V7021
[8]   Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime [J].
Cakmakyapan, Semih ;
Lu, Ping Keng ;
Navabi, Aryan ;
Jarrahi, Mona .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7
[9]   Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks [J].
Chen, Yu-Hsin ;
Krishna, Tushar ;
Emer, Joel S. ;
Sze, Vivienne .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (01) :127-138
[10]   HYBRID OPTOELECTRONIC NEURAL NETWORKS USING A MUTUALLY PUMPED PHASE-CONJUGATE MIRROR [J].
DUNNING, GJ ;
OWECHKO, Y ;
SOFFER, BH .
OPTICS LETTERS, 1991, 16 (12) :928-930