Spatio-Temporal Attention Networks for Action Recognition and Detection

被引:117
|
作者
Li, Jun [1 ]
Liu, Xianglong [1 ,2 ]
Zhang, Wenxuan [1 ]
Zhang, Mingyuan [1 ]
Song, Jingkuan [3 ]
Sebe, Nicu [4 ]
机构
[1] Beihang Univ, State Key Lab Software Dev Environm, Beijing 10000, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 10000, Peoples R China
[3] Univ Elect Sci & Technol China, Innovat Ctr, Chengdu 610051, Peoples R China
[4] Univ Trento, Dept Informat Engn & Comp Sci, I-38122 Trento, Italy
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Feature extraction; Task analysis; Two dimensional displays; Computer architecture; Optical imaging; Visualization; 3D CNN; spatio-temporal attention; temporal attention; spatial attention; action recognition; action detection; REPRESENTATION; VIDEOS;
D O I
10.1109/TMM.2020.2965434
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, 3D Convolutional Neural Network (3D CNN) models have been widely studied for video sequences and achieved satisfying performance in action recognition and detection tasks. However, most of the existing 3D CNNs treat all input video frames equally, thus ignoring the spatial and temporal differences across the video frames. To address the problem, we propose a spatio-temporal attention (STA) network that is able to learn the discriminative feature representation for actions, by respectively characterizing the beneficial information at both the frame level and the channel level. By simultaneously exploiting the differences in spatial and temporal dimensions, our STA module enhances the learning capability of the 3D convolutions when handling the complex videos. The proposed STA method can be wrapped as a generic module easily plugged into the state-of-the-art 3D CNN architectures for video action detection and recognition. We extensively evaluate our method on action recognition and detection tasks over three popular datasets (UCF-101, HMDB-51 and THUMOS 2014), and the experimental results demonstrate that adding our STA network module can obtain the state-of-the-art performance on UCF-101 and HMDB-51, which has the top-1 accuracies of 98.4% and 81.4% respectively, and achieve significant improvement on THUMOS 2014 dataset compared against original models.
引用
收藏
页码:2990 / 3001
页数:12
相关论文
共 50 条
  • [41] Spatio-temporal attention on manifold space for 3D human action recognition
    Chongyang Ding
    Kai Liu
    Fei Cheng
    Evgeny Belyaev
    Applied Intelligence, 2021, 51 : 560 - 570
  • [42] Human Action Recognition by Learning Spatio-Temporal Features With Deep Neural Networks
    Wang, Lei
    Xu, Yangyang
    Cheng, Jun
    Xia, Haiying
    Yin, Jianqin
    Wu, Jiaji
    IEEE ACCESS, 2018, 6 : 17913 - 17922
  • [43] STAR-Transformer: A Spatio-temporal Cross Attention Transformer for Human Action Recognition
    Ahn, Dasom
    Kim, Sangwon
    Hong, Hyunsu
    Ko, Byoung Chul
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3319 - 3328
  • [44] Dual Stream Spatio-Temporal Motion Fusion With Self-Attention For Action Recognition
    Jalal, Md Asif
    Aftab, Waqas
    Moore, Roger K.
    Mihaylova, Lyudmila
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [45] Depthwise Spatio-Temporal STFT Convolutiona Neural Networks for Human Action Recognition
    Kumawat, Sudhakar
    Verma, Manisha
    Nakashima, Yuta
    Raman, Shanmuganathan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 4839 - 4851
  • [46] Spatio-Temporal Action Detector with Self-Attention
    Ma, Xurui
    Luo, Zhigang
    Zhang, Xiang
    Liao, Qing
    Shen, Xingyu
    Wang, Mengzhu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [47] Towards A Robust Spatio-Temporal Interest Point Detection For Human Action Recognition
    Shabani, Hossein
    Clausi, David A.
    Zelek, John S.
    2009 CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, 2009, : 237 - 243
  • [48] Online Spatio-temporal Action Detection for Eldercare
    Koh, Thean Chun
    Yeo, Chai Kiat
    Jing, Xuan
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 126 - 127
  • [49] Spatio-temporal graph attention networks for traffic prediction
    Ma, Chuang
    Yan, Li
    Xu, Guangxia
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (09): : 978 - 988
  • [50] Spatio-Temporal Steerable Pyramid for Human Action Recognition
    Zhen, Xiantong
    Shao, Ling
    2013 10TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), 2013,