Spatio-Temporal Attention Networks for Action Recognition and Detection

被引:117
|
作者
Li, Jun [1 ]
Liu, Xianglong [1 ,2 ]
Zhang, Wenxuan [1 ]
Zhang, Mingyuan [1 ]
Song, Jingkuan [3 ]
Sebe, Nicu [4 ]
机构
[1] Beihang Univ, State Key Lab Software Dev Environm, Beijing 10000, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 10000, Peoples R China
[3] Univ Elect Sci & Technol China, Innovat Ctr, Chengdu 610051, Peoples R China
[4] Univ Trento, Dept Informat Engn & Comp Sci, I-38122 Trento, Italy
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Feature extraction; Task analysis; Two dimensional displays; Computer architecture; Optical imaging; Visualization; 3D CNN; spatio-temporal attention; temporal attention; spatial attention; action recognition; action detection; REPRESENTATION; VIDEOS;
D O I
10.1109/TMM.2020.2965434
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, 3D Convolutional Neural Network (3D CNN) models have been widely studied for video sequences and achieved satisfying performance in action recognition and detection tasks. However, most of the existing 3D CNNs treat all input video frames equally, thus ignoring the spatial and temporal differences across the video frames. To address the problem, we propose a spatio-temporal attention (STA) network that is able to learn the discriminative feature representation for actions, by respectively characterizing the beneficial information at both the frame level and the channel level. By simultaneously exploiting the differences in spatial and temporal dimensions, our STA module enhances the learning capability of the 3D convolutions when handling the complex videos. The proposed STA method can be wrapped as a generic module easily plugged into the state-of-the-art 3D CNN architectures for video action detection and recognition. We extensively evaluate our method on action recognition and detection tasks over three popular datasets (UCF-101, HMDB-51 and THUMOS 2014), and the experimental results demonstrate that adding our STA network module can obtain the state-of-the-art performance on UCF-101 and HMDB-51, which has the top-1 accuracies of 98.4% and 81.4% respectively, and achieve significant improvement on THUMOS 2014 dataset compared against original models.
引用
收藏
页码:2990 / 3001
页数:12
相关论文
共 50 条
  • [41] Spatio-temporal Video Autoencoder for Human Action Recognition
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 114 - 123
  • [42] Actor-Centric Spatio-Temporal Feature Extraction for Action Recognition
    Anil, Kunchala
    Bouroche, Melanie
    Schoen-Phelan, Bianca
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT I, 2024, 2009 : 586 - 599
  • [43] Learning Spatio-Temporal Representations for Action Recognition: A Genetic Programming Approach
    Liu, Li
    Shao, Ling
    Li, Xuelong
    Lu, Ke
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 158 - 170
  • [44] Spatio-Temporal 3D Action Recognition with Hierarchical Self-Attention Mechanism
    Araei, Soheil
    Nadian-Ghomsheh, Ali
    2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), 2021,
  • [45] STAR plus plus : Rethinking spatio-temporal cross attention transformer for video action recognition
    Ahn, Dasom
    Kim, Sangwon
    Ko, Byoung Chul
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28446 - 28459
  • [46] AMS-Net: Modeling Adaptive Multi-Granularity Spatio-Temporal Cues for Video Action Recognition
    Wang, Qilong
    Hu, Qiyao
    Gao, Zilin
    Li, Peihua
    Hu, Qinghua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 18731 - 18745
  • [47] A spatio-temporal attention fusion model for students behaviour recognition
    Wang, Xiaoli
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2022, 9 (34)
  • [48] Spatio-Temporal Adaptive Network With Bidirectional Temporal Difference for Action Recognition
    Li, Zhilei
    Li, Jun
    Ma, Yuqing
    Wang, Rui
    Shi, Zhiping
    Ding, Yifu
    Liu, Xianglong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 5174 - 5185
  • [49] Multistage Spatio-Temporal Networks for Robust Sketch Recognition
    Li, Hanhui
    Jiang, Xudong
    Guan, Boliang
    Wang, Ruomei
    Thalmann, Nadia Magnenat
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2683 - 2694
  • [50] Glimpse and Zoom: Spatio-Temporal Focused Dynamic Network for Skeleton-Based Action Recognition
    Zhao, Zhifu
    Chen, Ziwei
    Li, Jianan
    Wang, Xiaotian
    Xie, Xuemei
    Huang, Lei
    Zhang, Wanxin
    Shi, Guangming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5616 - 5629