Exploring the size limit of protein diffusion through the periplasm in cyanobacterium Anabaena sp PCC 7120 using the 13 kDa iLOV fluorescent protein

被引:17
作者
Zhang, Li-Chen [1 ]
Risoul, Veronique [1 ]
Latifi, Amel [1 ]
Christie, John M. [2 ]
Zhang, Cheng-Cai [1 ]
机构
[1] Aix Marseille Univ, CNRS, Lab Chim Bacterienne, UMR 7283, F-13009 Marseille 20, France
[2] Univ Glasgow, Coll Med Vet & Life Sci, Inst Mol Cell & Syst Biol, Glasgow G12 8QQ, Lanark, Scotland
关键词
Periplasm; Fluorescent protein; iLOV; GFP; Anabaena; HETEROCYST-FORMING CYANOBACTERIUM; INTERCELLULAR MOLECULAR-EXCHANGE; PATTERN-FORMATION; ESCHERICHIA-COLI; SP PCC-7120; CELL; DIFFERENTIATION; PATHWAY; CYLINDRICA; BINDING;
D O I
10.1016/j.resmic.2013.05.004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In the filamentous heterocyst-forming cyanobacterium Anabaena PCC 7120, vegetative cells and heterocysts are interdependent on each other and engaged in exchanges of metabolites for survival when grown under diazotrophic conditions. In this organism, the periplasm appears to be continuous along each filament, with a shared outer membrane; however, barriers exist preventing free diffusion of the fluorescent protein GFP (27 kDa) targeted into the periplasmic space. Here we expressed a smaller fluorescent protein iLOV (similar to 13 kDa) fused to the All3333 (a putative homologue of NrtA) signal sequence corresponding to those recognized by the TAT protein translocation system, which exports iLOV to the periplasm of either heterocysts or vegetative cells. Fluorescence microscopy and immunoblot analysis indicated that the iLOV protein is translocated into the periplasm of the producing cell and properly processed, but does not diffuse to neighboring cells via the periplasm. Thus, periplasmic barriers appear to block diffusion of molecules with a size of 13 kDa, the minimum size tested thus far. Assuming that the physical barrier is the peptidoglycan sacculus, its pores might allow diffusion of molecules within the size range between the PatS pentapeptide and iLOV, thus between 0.53 kDa and 13 kDa. (C) 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:710 / 717
页数:8
相关论文
共 49 条
  • [1] Heterocyst patterns without patterning proteins in cyanobacterial filaments
    Allard, Jun F.
    Hill, Alison L.
    Rutenberg, Andrew D.
    [J]. DEVELOPMENTAL BIOLOGY, 2007, 312 (01) : 427 - 434
  • [2] The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection
    Chapman, Sean
    Faulkner, Christine
    Kaiserli, Eirini
    Garcia-Mata, Carlos
    Savenkov, Eugene I.
    Roberts, Alison G.
    Oparka, Karl J.
    Christie, John M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (50) : 20038 - 20043
  • [3] Carbon cycling in Anabaena sp PCC 7120.: Sucrose synthesis in the heterocysts and possible role in nitrogen fixation
    Cumino, Andrea C.
    Marcozzi, Clarisa
    Barreiro, Roberto
    Salerno, Graciela L.
    [J]. PLANT PHYSIOLOGY, 2007, 143 (03) : 1385 - 1397
  • [4] Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp.
    Curatti, L
    Flores, E
    Salerno, G
    [J]. FEBS LETTERS, 2002, 513 (2-3): : 175 - 178
  • [5] The permeability of the wall fabric of Escherichia coli and Bacillus subtilis
    Demchick, P
    Koch, AL
    [J]. JOURNAL OF BACTERIOLOGY, 1996, 178 (03) : 768 - 773
  • [6] Peptidoglycan as a barrier to transenvelope transport
    Dijkstra, AJ
    Keck, W
    [J]. JOURNAL OF BACTERIOLOGY, 1996, 178 (19) : 5555 - 5562
  • [7] DEVELOPMENTAL REGULATION AND SPATIAL PATTERN OF EXPRESSION OF THE STRUCTURAL GENES FOR NITROGENASE IN THE CYANOBACTERIUM ANABAENA
    ELHAI, J
    WOLK, CP
    [J]. EMBO JOURNAL, 1990, 9 (10) : 3379 - 3388
  • [8] Evidence for Direct Binding between HetR from Anabaena sp PCC 7120 and PatS-5
    Feldmann, Erik A.
    Ni, Shuisong
    Sahu, Indra D.
    Mishler, Clay H.
    Risser, Douglas D.
    Murakami, Jodi L.
    Tom, Sasa K.
    McCarrick, Robert M.
    Lorigan, Gary A.
    Tolbert, Blanton S.
    Callahan, Sean M.
    Kennedy, Michael A.
    [J]. BIOCHEMISTRY, 2011, 50 (43) : 9212 - 9224
  • [9] Is the periplasm continuous in filamentous multicellular cyanobacteria?
    Flores, Enrique
    Herrero, Antonia
    Wolk, C. Peter
    Maldener, Iris
    [J]. TRENDS IN MICROBIOLOGY, 2006, 14 (10) : 439 - 443
  • [10] Modeling heterocyst pattern formation in cyanobacteria
    Gerdtzen, Ziomara P.
    Salgado, J. Cristian
    Osses, Axel
    Asenjo, Juan A.
    Rapaport, Ivan
    Andrews, Barbara A.
    [J]. BMC BIOINFORMATICS, 2009, 10