Lattice Boltzmann Modeling of Advection-Diffusion-Reaction Equations: Pattern Formation Under Uniform Differential Advection

被引:8
|
作者
Ayodele, S. G. [1 ]
Raabe, D. [1 ]
Varnik, F. [1 ,2 ]
机构
[1] Max Planck Inst, Max Planck Str 1, D-40237 Dusseldorf, Germany
[2] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat, D-44780 Bochum, Germany
关键词
Advective transport; differential advection; Turing patterns; linear stability; lattice Boltzmann; SPATIAL-PATTERNS; DYNAMICS; OSCILLATIONS;
D O I
10.4208/cicp.441011.270112s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A lattice Boltzmann model for the study of advection-diffusion-reaction (ADR) problems is proposed. Via multiscale expansion analysis, we derive from the LB model the resulting macroscopic equations. It is shown that a linear equilibrium distribution is sufficient to produce ADR equations within error terms of the order of the Mach number squared. Furthermore, we study spatially varying structures arising from the interaction of advective transport with a cubic autocatalytic reaction-diffusion process under an imposed uniform flow. While advecting all the present species leads to trivial translation of the Turing patterns, differential advection leads to flow induced instability characterized with traveling stripes with a velocity dependent wave vector parallel to the flow direction. Predictions from a linear stability analysis of the model equations are found to be in line with these observations.
引用
收藏
页码:741 / 756
页数:16
相关论文
共 50 条
  • [41] A Compact High Order Finite Volume Scheme for Advection-Diffusion-Reaction Equations
    Anthonissen, M. J. H.
    Boonkkamp, J. H. M. ten Thije
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 410 - 414
  • [42] A MULTISTAGE WIENER CHAOS EXPANSION METHOD FOR STOCHASTIC ADVECTION-DIFFUSION-REACTION EQUATIONS
    Zhang, Z.
    Rozovskii, B.
    Tretyakov, M. V.
    Karniadakis, G. E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A914 - A936
  • [43] Convergence and Applications of the Implicit Finite Difference Method for Advection-Diffusion-Reaction Equations
    Pananu, Kanokwan
    Sungnul, Surattana
    Sirisubtawee, Sekson
    Phongthanapanich, Sutthisak
    Sungnul, Surattana (sutthisak.p@cit.kmutnb.ac.th), 1600, International Association of Engineers (47): : 1 - 19
  • [44] SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations
    Berrone, S.
    Borio, A.
    Manzini, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 500 - 529
  • [45] Pore network modeling of advection-diffusion-reaction in porous media: The effects of channels
    Huang, Xiang
    Zhou, Wei
    Liu, Bin
    Jiang, Kaiyong
    CHEMICAL ENGINEERING SCIENCE, 2023, 271
  • [46] A variational multiscale model for the advection-diffusion-reaction equation
    Houzeaux, Guillaume
    Eguzkitza, Beatriz
    Vazquez, Mariano
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2009, 25 (07): : 787 - 809
  • [47] Dependence of advection-diffusion-reaction on flow coherent structures
    Tang, Wenbo
    Luna, Christopher
    PHYSICS OF FLUIDS, 2013, 25 (10)
  • [48] Regularity and wave study of an advection-diffusion-reaction equation
    Akgul, Ali
    Ahmed, Nauman
    Shahzad, Muhammad
    Baber, Muhammad Zafarullah
    Iqbal, Muhammad Sajid
    Chan, Choon Kit
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [49] Behaviour of advection-diffusion-reaction processes with forcing terms
    Sari, Murat
    Tahir, Shko Ali
    Bouhamidi, Abderrahman
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (02) : 233 - 252
  • [50] Recursive POD Expansion for the Advection-Diffusion-Reaction Equation
    Azaiez, M.
    Chacon Rebollo, T.
    Perracchione, E.
    Vega, J. M.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (05) : 1556 - 1578