Catalytic CO Oxidation over Well-Defined Cobalt Oxide Nanoparticles: Size-Reactivity Correlation

被引:128
作者
Iablokov, Viacheslav [1 ]
Barbosa, Roland [1 ,3 ]
Pollefeyt, Glenn [2 ]
Van Driessche, Isabel [2 ]
Chenakin, Sergey [1 ]
Kruse, Norbert [1 ,3 ]
机构
[1] Univ Libre Bruxelles, Chem Phys Mat, B-1050 Brussels, Belgium
[2] Univ Ghent, Dept Inorgan & Phys Chem, SCRiPTS, B-9000 Ghent, Belgium
[3] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA
来源
ACS CATALYSIS | 2015年 / 5卷 / 10期
关键词
particle size effect; cobalt nanoparticles; Co3O4; nanoparticles; catalytic CO oxidation; XPS; CARBON-MONOXIDE OXIDATION; LOW-TEMPERATURE OXIDATION; METAL-OXIDES; CO3O4; NANOCRYSTALS; OXYGEN; HYDROCARBONS; CHEMISTRY; SURFACES; PHASE;
D O I
10.1021/acscatal.5b01452
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Co nanoparticles of well-defined size were synthesized by temperature-controlled injection of Co-2(CO)(8) into dichlorobenzene. After intercalation into mesoporous MCF-17 and temperature-programmed oxidation, Co3O4/MCF-17 model catalysts were obtained with cobalt oxide particle sizes varying between 3.5 and 12.2 nm. We demonstrate here the occurrence of a distinct particle size effect for the CO oxidation. Maximum reaction rates of about 0.77 nm(-2) s(-1) at 150 degrees C were observed for Co3O4 particles with a size in the range of 5 to 8 nm. The reaction rates decreased for either smaller or larger sizes. X-ray photoelectron spectroscopy allowed establishing a clear correlation between the Co3+ trivalent oxidation state and the CO oxidation rate.
引用
收藏
页码:5714 / 5718
页数:5
相关论文
共 31 条
[11]   Size-Controlled Model Co Nanoparticle Catalysts for CO2 Hydrogenation: Synthesis, Characterization, and Catalytic Reactions [J].
Iablokov, Viacheslav ;
Beaumont, Simon K. ;
Alayoglu, Selim ;
Pushkarev, Vladimir V. ;
Specht, Colin ;
Gao, Jinghua ;
Alivisatos, A. Paul ;
Kruse, Norbert ;
Somorjai, Gabor A. .
NANO LETTERS, 2012, 12 (06) :3091-3096
[12]   On the catalytic activity of Co3O4 in low-temperature CO oxidation [J].
Jansson, J ;
Palmqvist, AEC ;
Fridell, E ;
Skoglundh, M ;
Österlund, L ;
Thormählen, P ;
Langer, V .
JOURNAL OF CATALYSIS, 2002, 211 (02) :387-397
[13]  
Jiao F., 2009, ANGEW CHEMIE, V121, P1873, DOI DOI 10.1002/ANGE.200805534
[14]   Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation [J].
Joo, Sang Hoon ;
Park, Jeong Y. ;
Renzas, J. Russell ;
Butcher, Derek R. ;
Huang, Wenyu ;
Somorjai, Gabor A. .
NANO LETTERS, 2010, 10 (07) :2709-2713
[15]  
Kim YD, 2001, TOP CATAL, V14, P95
[16]   Surface structure of polar Co3O4(111) films grown epitaxially on Ir(100)-(1 x 1) [J].
Meyer, W. ;
Biedermann, K. ;
Gubo, M. ;
Hammer, L. ;
Heinz, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (26)
[17]   Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J].
Murray, CB ;
Kagan, CR ;
Bawendi, MG .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :545-610
[18]   Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen [J].
Ohnishi, Chie ;
Asano, Kimihiro ;
Iwamoto, Shinji ;
Chikama, Katsumi ;
Inoue, Masashi .
CATALYSIS TODAY, 2007, 120 (02) :145-150
[19]   Rhodium Nanoparticle Shape Dependence in the Reduction of NO by CO [J].
Renzas, James Russell ;
Zhang, Yawen ;
Huang, Wenyu ;
Somorjai, Gabor A. .
CATALYSIS LETTERS, 2009, 132 (3-4) :317-322
[20]   Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides [J].
Royer, Sebastien ;
Duprez, Daniel .
CHEMCATCHEM, 2011, 3 (01) :24-65