Leaf relative uptake of carbonyl sulfide to CO2 seen through the lens of stomatal conductance-photosynthesis coupling

被引:11
作者
Sun, Wu [1 ]
Berry, Joseph A. [1 ]
Yakir, Dan [2 ]
Seibt, Ulli [3 ]
机构
[1] Carnegie Inst Sci, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA
[2] Weizmann Inst Sci, Earth & Planetary Sci, IL-76100 Rehovot, Israel
[3] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, 520 Portola Plaza, Los Angeles, CA 90095 USA
基金
欧洲研究理事会; 芬兰科学院; 美国国家科学基金会;
关键词
carbonyl sulfide (COS or OCS); leaf carbonyl sulfide uptake; leaf COS; CO2 relative uptake (LRU); leaf-to-canopy upscaling; stomatal conductance; stomatal conductance-photosynthesis coupling; Typha latifolia (broadleaf cattail); GAS-EXCHANGE; GLOBAL PHOTOSYNTHESIS; MESOPHYLL CONDUCTANCE; BIOCHEMICAL-MODEL; ANHYDRASE; DYNAMICS; FLUXES; FOREST; C-3; TRANSPIRATION;
D O I
10.1111/nph.18178
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Carbonyl sulfide (COS) has emerged as a multi-scale tracer for terrestrial photosynthesis. To infer ecosystem-scale photosynthesis from COS fluxes often requires knowledge of leaf relative uptake (LRU), the concentration-normalized ratio between leaf COS uptake and photosynthesis. However, current mechanistic understanding of LRU variability remains inadequate for deriving robust COS-based estimates of photosynthesis. We derive a set of closed-form equations to describe LRU responses to light, humidity and CO2 based on the Ball-Berry stomatal conductance model and the biochemical model of photosynthesis. This framework reproduces observed LRU responses: decreasing LRU with increasing light or decreasing humidity; it also predicts that LRU increases with ambient CO2. By fitting the LRU equations to flux measurements on a C-3 reed (Typha latifolia), we obtain physiological parameters that control LRU variability, including an estimate of the Ball-Berry slope of 7.1 without using transpiration measurements. Sensitivity tests reveal that LRU is more sensitive to photosynthetic capacity than to the Ball-Berry slope, indicating stomatal response to photosynthesis. This study presents a simple framework for interpreting observed LRU variability and upscaling LRU. The stoma-regulated LRU response to CO2 suggests that COS may offer a unique window into long-term stomatal acclimation to elevated CO2.
引用
收藏
页码:1729 / 1742
页数:14
相关论文
共 78 条
  • [1] The response of photosynthesis and stomatal conductance to rising [CO2]:: mechanisms and environmental interactions
    Ainsworth, Elizabeth A.
    Rogers, Alistair
    [J]. PLANT CELL AND ENVIRONMENT, 2007, 30 (03) : 258 - 270
  • [2] Spatiotemporal patterns of terrestrial gross primary production: A review
    Anav, Alessandro
    Friedlingstein, Pierre
    Beer, Christian
    Ciais, Philippe
    Harper, Anna
    Jones, Chris
    Murray-Tortarolo, Guillermo
    Papale, Dario
    Parazoo, Nicholas C.
    Peylin, Philippe
    Piao, Shilong
    Sitch, Stephen
    Viovy, Nicolas
    Wiltshire, Andy
    Zhao, Maosheng
    [J]. REVIEWS OF GEOPHYSICS, 2015, 53 (03) : 785 - 818
  • [3] Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models
    Arora, Vivek K.
    Katavouta, Anna
    Williams, Richard G.
    Jones, Chris D.
    Brovkin, Victor
    Friedlingstein, Pierre
    Schwinger, Jorg
    Bopp, Laurent
    Boucher, Olivier
    Cadule, Patricia
    Chamberlain, Matthew A.
    Christian, James R.
    Delire, Christine
    Fisher, Rosie A.
    Hajima, Tomohiro
    Ilyina, Tatiana
    Joetzjer, Emilie
    Kawamiya, Michio
    Koven, Charles D.
    Krasting, John P.
    Law, Rachel M.
    Lawrence, David M.
    Lenton, Andrew
    Lindsay, Keith
    Pongratz, Julia
    Raddatz, Thomas
    Seferian, Roland
    Tachiiri, Kaoru
    Tjiputra, Jerry F.
    Wiltshire, Andy
    Wu, Tongwen
    Ziehn, Tilo
    [J]. BIOGEOSCIENCES, 2020, 17 (16) : 4173 - 4222
  • [4] Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux
    Asaf, David
    Rotenberg, Eyal
    Tatarinov, Fyodor
    Dicken, Uri
    Montzka, Stephen A.
    Yakir, Dan
    [J]. NATURE GEOSCIENCE, 2013, 6 (03) : 186 - 190
  • [5] Anthropogenic Impacts on Atmospheric Carbonyl Sulfide Since the 19th Century Inferred From Polar Firn Air and Ice Core Measurements
    Aydin, M.
    Britten, G. L.
    Montzka, S. A.
    Buizert, C.
    Primeau, F.
    Petrenko, V
    Battle, M. B.
    Nicewonger, M. R.
    Patterson, J.
    Hmiel, B.
    Saltzman, E. S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (16)
  • [6] Changes in atmospheric carbonyl sulfide over the last 54,000years inferred from measurements in Antarctic ice cores
    Aydin, M.
    Campbell, J. E.
    Fudge, T. J.
    Cuffey, K. M.
    Nicewonger, M. R.
    Verhulst, K. R.
    Saltzman, E. S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (04) : 1943 - 1954
  • [7] AN ANALYTICAL SOLUTION FOR COUPLED LEAF PHOTOSYNTHESIS AND STOMATAL CONDUCTANCE MODELS
    BALDOCCHI, D
    [J]. TREE PHYSIOLOGY, 1994, 14 (7-9) : 1069 - 1079
  • [8] Ball J. T., 1988, An analysis of stomatal conductance
  • [9] Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate
    Beer, Christian
    Reichstein, Markus
    Tomelleri, Enrico
    Ciais, Philippe
    Jung, Martin
    Carvalhais, Nuno
    Roedenbeck, Christian
    Arain, M. Altaf
    Baldocchi, Dennis
    Bonan, Gordon B.
    Bondeau, Alberte
    Cescatti, Alessandro
    Lasslop, Gitta
    Lindroth, Anders
    Lomas, Mark
    Luyssaert, Sebastiaan
    Margolis, Hank
    Oleson, Keith W.
    Roupsard, Olivier
    Veenendaal, Elmar
    Viovy, Nicolas
    Williams, Christopher
    Woodward, F. Ian
    Papale, Dario
    [J]. SCIENCE, 2010, 329 (5993) : 834 - 838
  • [10] Seasonal Evolution of Canopy Stomatal Conductance for a Prairie and Maize Field in the Midwestern United States from Continuous Carbonyl Sulfide Fluxes
    Berkelhammer, M.
    Alsip, B.
    Matamala, R.
    Cook, D.
    Whelan, M. E.
    Joo, E.
    Bernacchi, C.
    Miller, J.
    Meyers, T.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (06)