On fading memory and asymptotic properties of steady state solutions for digital systems

被引:0
作者
Borys, A
机构
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:593 / 596
页数:4
相关论文
共 50 条
[21]   Approximating the Steady-State Periodic Solutions of Contractive Systems [J].
Coogan, Samuel ;
Margaliot, Michael .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) :847-853
[22]   Asymptotic performance of digital communication over fading channels [J].
Kong, Ning ;
Milstein, Laurence B. .
2007 IEEE 66TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, 2007, :910-914
[23]   Timoshenko systems with fading memory [J].
Conti, Monica ;
Dell'Oro, Filippo ;
Pata, Vittorino .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (04) :367-377
[24]   Asymptotic Convergence to Steady-State Solutions for Solutions of the Initial Boundary Problem to a Simplified Hydrodynamic Model for Semiconductor [J].
Ying Guliang Department of Mathematics Xianning Teachers College Xia nning China .
Wuhan University Journal of Natural Sciences, 2000, (03) :265-270
[25]   Fluctuation properties of steady-state Langevin systems [J].
Weiss, Jeffrey B. .
PHYSICAL REVIEW E, 2007, 76 (06)
[26]   ASYMPTOTIC PROPERTIES OF SOLUTIONS OF DIFFERENTIAL-SYSTEMS WITH DEVIATING ARGUMENT [J].
MIHALIKOVA, B .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1989, 39 (04) :559-577
[27]   Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems [J].
Revathi, Thiagarajan .
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2013, 8 (02) :585-595
[28]   On the asymptotic properties of continuous solutions of the systems of nonlinear functional equations [J].
Pelyukh, G. P. .
UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (01) :132-139
[30]   Existence and asymptotic properties of normalized solutions for nonlinear Schrodinger systems [J].
Qin, Jian ;
Zhang, Zhitao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 552 (02)