Negation-Free and Contradiction-Free Proof of the Steiner-Lehmus Theorem

被引:6
|
作者
Pambuccian, Victor [1 ]
机构
[1] Arizona State Univ West Campus, Sch Math & Nat Sci, Phoenix, AZ 85069 USA
关键词
Steiner-Lehmus theorem; direct proof; indirect proof; sequent calculus; absolute geometry;
D O I
10.1215/00294527-2017-0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By rephrasing quantifier-free axioms as rules of derivation in sequent calculus, we show that the generalized Steiner-Lehmus theorem admits a direct proof in classical logic. This provides a partial answer to a question raised by Sylvester in 1852. We also present some comments on possible intuitionistic approaches.
引用
收藏
页码:75 / 90
页数:16
相关论文
共 4 条
  • [1] More on the Steiner-Lehmus Theorem
    Abu-Saymeh, Sadi
    Hajja, Mowaffaq
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2010, 14 (02): : 127 - 133
  • [2] A Stronger Form of the Steiner-Lehmus Theorem
    Nicula, Virgil
    Pohoata, Cosmin
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2009, 13 (01): : 25 - 27
  • [3] On the Equality of Cevians: Beyond the Steiner-Lehmus Theorem
    Myrianthis, Kostantinos
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2016, 20 (02): : 185 - 207
  • [4] Echos of the Steiner-Lehmus equal bisectors theorem
    Borgers, Christoph
    Grinberg, Eric L.
    Orhon, Mehmet
    Shen, Junhao
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (01) : 257 - 263