UNIQUENESS RESULT FOR NONLINEAR ANISOTROPIC ELLIPTIC EQUATIONS

被引:0
作者
Di Nardo, Rosaria [1 ]
Feo, Filomena [2 ]
Guibe, Olivier [3 ]
机构
[1] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
[2] Univ Napoli Parthenope, Dipartimento Tecnol, Ctr Direz Isola C4, I-80100 Naples, Italy
[3] Univ Rouen, Lab Math Raphael Salem, CNRS, F-76801 St Etienne, France
关键词
LOWER-ORDER TERMS; RENORMALIZED SOLUTIONS; EXISTENCE; ADVECTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider here a class of anisotropic elliptic equations, in a bounded domain Cl with Lipschitz continuous boundary delta Omega, of the type - partial derivative(xi)(ai(x,u)vertical bar partial derivative x(i) u vertical bar(pi-2)partial derivative(xi)u) = f- div g with Dirichlet boundary conditions. Using the framework of renormalized solutions we prove the uniqueness of the solution under a very local Lipschitz condition on the coefficients a(i)(x, s) with respect to s and with f belonging to L-1(Omega).
引用
收藏
页码:433 / 458
页数:26
相关论文
共 50 条
[31]   Existence and uniqueness of positive solutions of semilinear elliptic equations [J].
Daw, Qiu-yi ;
Fu, Yu-xia ;
Gu, Yong-geng .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (08) :1141-1156
[32]   Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and L1-data [J].
Wittbold, P. ;
Zimmermann, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2990-3008
[33]   BOUNDEDNESS OF SOLUTIONS TO SINGULAR ANISOTROPIC ELLIPTIC EQUATIONS [J].
Brandolini, Barbara ;
Cirstea, Florica C. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (04) :1545-1561
[34]   Existence Result for Solutions to Some Noncoercive Elliptic Equations [J].
A. Marah ;
H. Redwane .
Acta Applicandae Mathematicae, 2023, 187
[35]   Multiplicity result for a class of elliptic equations with singular term [J].
Chen, J. ;
Murillo, K. ;
Rocha, E. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (15) :5797-5814
[36]   Existence Result for Solutions to Some Noncoercive Elliptic Equations [J].
Marah, A. ;
Redwane, H. .
ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
[37]   Nonlinear elliptic equations on Carnot groups [J].
Ferrara, Massimiliano ;
Bisci, Giovanni Molica ;
Repovs, Dusan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) :707-718
[38]   REGULARITY FOR NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS [J].
Marcellini, Paolo .
ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2020, 98
[39]   NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR REACTION [J].
Papageorgiou, Nikolaos S. ;
Smyrlis, George .
OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (02) :489-514
[40]   REGULARITY FOR SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS [J].
Greco, Luigi ;
Moscariello, Gioconda ;
Zecca, Gabriella .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (9-10) :1105-1113