UNIQUENESS RESULT FOR NONLINEAR ANISOTROPIC ELLIPTIC EQUATIONS

被引:0
作者
Di Nardo, Rosaria [1 ]
Feo, Filomena [2 ]
Guibe, Olivier [3 ]
机构
[1] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
[2] Univ Napoli Parthenope, Dipartimento Tecnol, Ctr Direz Isola C4, I-80100 Naples, Italy
[3] Univ Rouen, Lab Math Raphael Salem, CNRS, F-76801 St Etienne, France
关键词
LOWER-ORDER TERMS; RENORMALIZED SOLUTIONS; EXISTENCE; ADVECTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider here a class of anisotropic elliptic equations, in a bounded domain Cl with Lipschitz continuous boundary delta Omega, of the type - partial derivative(xi)(ai(x,u)vertical bar partial derivative x(i) u vertical bar(pi-2)partial derivative(xi)u) = f- div g with Dirichlet boundary conditions. Using the framework of renormalized solutions we prove the uniqueness of the solution under a very local Lipschitz condition on the coefficients a(i)(x, s) with respect to s and with f belonging to L-1(Omega).
引用
收藏
页码:433 / 458
页数:26
相关论文
共 50 条
[21]   Existence and Uniqueness of Renormalized Solutions to Some Nonlinear Elliptic Equations with Variable Exponents and Measure Data [J].
Lv, Boqiang ;
Li, Fengquan ;
Zou, Weilin .
JOURNAL OF CONVEX ANALYSIS, 2014, 21 (02) :317-338
[22]   LOCAL UNIQUENESS PROBLEM FOR A NONLINEAR ELLIPTIC EQUATION [J].
Chen, Miao ;
Wan, Youyan ;
Xiang, Chang-Lin .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) :1037-1055
[23]   Neumann problems for nonlinear elliptic equations with L1 data [J].
Betta, M. F. ;
Guibe, O. ;
Mercaldo, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (03) :898-924
[24]   Anisotropic nonlinear elliptic equations with variable exponents and two weighted first order terms [J].
Naceri, Mokhtar .
FILOMAT, 2024, 38 (03) :1043-1054
[25]   NONLINEAR ANISOTROPIC ELLIPTIC AND PARABOLIC EQUATIONS WITH VARIABLE EXPONENTS AND L1 DATA [J].
Bendahmane, Mostafa ;
Karlsen, Kenneth H. ;
Saad, Mazen .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (03) :1201-1220
[26]   Uniqueness results for nonlinear elliptic problems with two lower order terms [J].
Di Nardo, Rosatia ;
Perrotta, Adamaria .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02) :107-128
[27]   On solutions of anisotropic elliptic equations with variable exponent and measure data [J].
Kozhevnikova, L. M. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (03) :333-367
[29]   Existence and uniqueness of positive solutions of semilinear elliptic equations [J].
Qiuyi DAI Yuxia FU Yonggeng GU Department of MathematicsHunan Normal UniversityChangsha China Department of Applied MathematicsHunan UniversityChangsha China .
ScienceinChina(SeriesA:Mathematics), 2007, (08) :1141-1156
[30]   Existence and uniqueness of positive solutions of semilinear elliptic equations [J].
Qiu-yi Dai ;
Yu-xia Fu ;
Yong-geng Gu .
Science in China Series A: Mathematics, 2007, 50 :1141-1156