Bitterness;
Extra virgin olive oil;
Predictive model;
Sensory evaluation;
Total phenol content;
PHENOLIC-COMPOUNDS;
PUNGENCY;
STORAGE;
QUALITY;
D O I:
10.1016/j.foodchem.2013.01.098
中图分类号:
O69 [应用化学];
学科分类号:
081704 ;
摘要:
An experimental investigation was performed on blend extra virgin olive oils (EVOOs) from different cultivars and EVOO from different olive monovarieties (Coratina, Leccino, Maiatica, Ogliarola) with the aim to evaluate the possibility of estimating the perceived bitterness intensity by using chemical indices, such as the total phenol content and the compounds responsible for oil bitterness measured spectrophotometrically at 225 nm K-225 value), as bitterness predictors in different EVOO. Therefore, a bitterness predictive model, based on the relationship between the perceived bitterness intensity of the selected stimuli and the chosen chemicals parameters has been built and validated. The results indicated that the oil bitterness intensity could be satisfactorily predicted by using the K-225 values of oil samples. (C) 2013 Elsevier Ltd. All rights reserved.
机构:
FEM, Res & Innovat Ctr, Dept Food Qual & Nutr, Via E Mach 1, I-38010 San Michele All Adige, TN, ItalyFree Univ Bolzano, Fac Sci & Technol, Piazza Univ 1, I-39100 Bolzano, Italy
Aprea, Eugenio
Cantini, Claudio
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Trees & Timber Inst, Via Aurelia 49, I-58022 Follonica, ItalyFree Univ Bolzano, Fac Sci & Technol, Piazza Univ 1, I-39100 Bolzano, Italy
Cantini, Claudio
Migliorini, Marzia
论文数: 0引用数: 0
h-index: 0
机构:
Azienda Speciale Camera Commercio Firenze, PromoFirenze, Lab Chim Merceol, Via Orcagna 70, I-50121 Florence, ItalyFree Univ Bolzano, Fac Sci & Technol, Piazza Univ 1, I-39100 Bolzano, Italy
Migliorini, Marzia
Gasperi, Flavia
论文数: 0引用数: 0
h-index: 0
机构:
FEM, Res & Innovat Ctr, Dept Food Qual & Nutr, Via E Mach 1, I-38010 San Michele All Adige, TN, ItalyFree Univ Bolzano, Fac Sci & Technol, Piazza Univ 1, I-39100 Bolzano, Italy