共 31 条
ON THE J-ANTI-INVARIANT COHOMOLOGY OF ALMOST COMPLEX 4-MANIFOLDS
被引:30
作者:
Draghici, Tedi
[1
]
Li, Tian-Jun
[2
]
Zhang, Weiyi
[3
]
机构:
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词:
KAHLER;
SURFACES;
METRICS;
D O I:
10.1093/qmath/har034
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For a compact almost complex 4-manifold (M, J), we study the subgroups H-J(+/-) of H-2(M, R) consisting of cohomology classes representable by J-invariant, respectively, J-anti-invariant real 2-forms. If b(+)=1, we show that, for generic almost complex structures on M, the subgroup H-J(-) is trivial. Computations of the subgroups and their dimensions h(J)(+/-) are obtained for almost complex structures related to integrable ones. We also prove semi-continuity properties for h(J)(+/-).
引用
收藏
页码:83 / 111
页数:29
相关论文