ON THE J-ANTI-INVARIANT COHOMOLOGY OF ALMOST COMPLEX 4-MANIFOLDS

被引:30
作者
Draghici, Tedi [1 ]
Li, Tian-Jun [2 ]
Zhang, Weiyi [3 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
KAHLER; SURFACES; METRICS;
D O I
10.1093/qmath/har034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a compact almost complex 4-manifold (M, J), we study the subgroups H-J(+/-) of H-2(M, R) consisting of cohomology classes representable by J-invariant, respectively, J-anti-invariant real 2-forms. If b(+)=1, we show that, for generic almost complex structures on M, the subgroup H-J(-) is trivial. Computations of the subgroups and their dimensions h(J)(+/-) are obtained for almost complex structures related to integrable ones. We also prove semi-continuity properties for h(J)(+/-).
引用
收藏
页码:83 / 111
页数:29
相关论文
共 31 条
[31]   RICCI CURVATURE OF A COMPACT KAHLER MANIFOLD AND COMPLEX MONGE-AMPERE EQUATION .1. [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (03) :339-411