ON THE J-ANTI-INVARIANT COHOMOLOGY OF ALMOST COMPLEX 4-MANIFOLDS

被引:30
作者
Draghici, Tedi [1 ]
Li, Tian-Jun [2 ]
Zhang, Weiyi [3 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
KAHLER; SURFACES; METRICS;
D O I
10.1093/qmath/har034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a compact almost complex 4-manifold (M, J), we study the subgroups H-J(+/-) of H-2(M, R) consisting of cohomology classes representable by J-invariant, respectively, J-anti-invariant real 2-forms. If b(+)=1, we show that, for generic almost complex structures on M, the subgroup H-J(-) is trivial. Computations of the subgroups and their dimensions h(J)(+/-) are obtained for almost complex structures related to integrable ones. We also prove semi-continuity properties for h(J)(+/-).
引用
收藏
页码:83 / 111
页数:29
相关论文
共 31 条
[11]  
Donaldson S., 2006, Nankai Tracts in Mathematics, V11, P153
[12]   Symplectic Forms and Cohomology Decomposition of almost Complex Four-Manifolds [J].
Draghici, Tedi ;
Li, Tian-Jun ;
Zhang, Weiyi .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (01) :1-17
[13]   On Some Cohomological Properties of Almost Complex Manifolds [J].
Fino, Anna ;
Tomassini, Adriano .
JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (01) :107-131
[14]  
GAUDUCHON P, 1977, CR ACAD SCI A MATH, V285, P387
[15]   THE 1-FORM OF TORSION OF A COMPACT HERMITIAN MANIFOLD [J].
GAUDUCHON, P .
MATHEMATISCHE ANNALEN, 1984, 267 (04) :495-518
[16]  
Gray A., 1980, ANN MAT PURA APPL, V123, P35, DOI [DOI 10.1007/BF01796539, 10.1007/BF01796539]
[17]   AN INTRINSIC CHARACTERIZATION OF KAHLER-MANIFOLDS [J].
HARVEY, R ;
LAWSON, HB .
INVENTIONES MATHEMATICAE, 1983, 74 (02) :169-198
[18]  
Hitchin N, 2007, J SYMPLECT GEOM, V5, P1
[19]  
Kobayashi S., 1969, Interscience Tracts in Pure and Applied Mathematics, V2, P15
[20]  
KODAIRA K, 1971, COMPLEX MANIFOLDS