ON THE J-ANTI-INVARIANT COHOMOLOGY OF ALMOST COMPLEX 4-MANIFOLDS

被引:30
作者
Draghici, Tedi [1 ]
Li, Tian-Jun [2 ]
Zhang, Weiyi [3 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
KAHLER; SURFACES; METRICS;
D O I
10.1093/qmath/har034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a compact almost complex 4-manifold (M, J), we study the subgroups H-J(+/-) of H-2(M, R) consisting of cohomology classes representable by J-invariant, respectively, J-anti-invariant real 2-forms. If b(+)=1, we show that, for generic almost complex structures on M, the subgroup H-J(-) is trivial. Computations of the subgroups and their dimensions h(J)(+/-) are obtained for almost complex structures related to integrable ones. We also prove semi-continuity properties for h(J)(+/-).
引用
收藏
页码:83 / 111
页数:29
相关论文
共 31 条
[1]  
Angella D., 2010, PREPRINT
[2]  
Angella D, 2011, J SYMPLECT GEOM, V9, P403
[3]  
[Anonymous], 2003, PhD thesis
[4]   Symplectic 4-manifolds with Hermitian Weyl tensor [J].
Apostolov, V ;
Armstrong, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4501-4513
[5]   Bihermitian structures on complex surfaces (vol 79, pg 414, 1999) [J].
Apostolov, V ;
Gauduchon, P ;
Grantcharov, G .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 :200-202
[6]   Local models and integrability of certain almost Kahler 4-manifolds [J].
Apostolov, V ;
Armstrong, J ;
Draghici, T .
MATHEMATISCHE ANNALEN, 2002, 323 (04) :633-666
[7]   Bihermitian surfaces with odd first Betti number [J].
Apostolov, V .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (03) :555-568
[8]   Hermitian conformal classes and almost Kahler structures on 4-manifolds [J].
Apostolov, V ;
Draghici, T .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1999, 11 (02) :179-195
[9]  
Armstrong J, 1997, Q J MATH, V48, P405
[10]  
Barth W. P., 2004, Compact complex surfaces, V4