Sniffing Detection Based on Network Traffic Probing and Machine Learning

被引:10
作者
Gregorczyk, Marcin [1 ]
Zorawski, Piotr [1 ]
Nowakowski, Piotr [1 ]
Cabaj, Krzysztof [2 ]
Mazurczyk, Wojciech [2 ]
机构
[1] Warsaw Univ Technol, Inst Telecommun, PL-00665 Warsaw, Poland
[2] Warsaw Univ Technol, Inst Comp Sci, PL-00665 Warsaw, Poland
基金
欧盟地平线“2020”;
关键词
Security; Machine learning; Protocols; Tools; Internet; Software; AI; artificial intelligence; ML; machine learning; network security; sniffing; threat detection;
D O I
10.1109/ACCESS.2020.3016076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cyber attacks are on the rise and each day cyber criminals are developing more and more sophisticated methods to compromise the security of their targets. Sniffing is one of the most important techniques that enables the attacker to collect information on the vulnerabilities of the devices, protocols and applications that can be exploited within the targeted network. It relies mainly on passively analyzing the traffic exchanged within the network, and due to its nature, such an activity is difficult to discover. That is why, in this article, we first revisit existing techniques and tools that can be used to perform sniffing as well as the corresponding mitigation methods. Based on this background, we propose a novel measurement-based detection method that infers whether the sniffing software is active on the suspected machine by network traffic probing and machine learning techniques. The presented experimental results prove that the proposed solution is effective.
引用
收藏
页码:149255 / 149269
页数:15
相关论文
共 50 条
  • [41] FPGA-Based Network Traffic Classification Using Machine Learning
    Elnawawy, Mohammed
    Sagahyroon, Assim
    Shanableh, Tamer
    IEEE ACCESS, 2020, 8 : 175637 - 175650
  • [42] Detecting APT Attacks Based on Network Traffic Using Machine Learning
    Xuan, Cho Do
    JOURNAL OF WEB ENGINEERING, 2021, 20 (01): : 171 - 190
  • [43] vTC: Machine Learning Based Traffic Classification as a Virtual Network Function
    He, Lu
    Xu, Chen
    Luo, Yan
    SDN-NFV SECURITY'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL WORKSHOP ON SECURITY IN SOFTWARE DEFINED NETWORKS & NETWORK FUNCTION VIRTUALIZATION, 2016, : 53 - 56
  • [44] Network intrusion detection system: A systematic study of machine learning and deep learning approaches
    Ahmad, Zeeshan
    Shahid Khan, Adnan
    Wai Shiang, Cheah
    Abdullah, Johari
    Ahmad, Farhan
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (01)
  • [45] Advanced Machine Learning Based Malware Detection Systems
    Kim, Song-Kyoo
    Feng, Xiaomei
    Al Hamadi, Hussam
    Damiani, Ernesto
    Yeun, Chan Yeob
    Nandyala, Sivaprasad
    IEEE ACCESS, 2024, 12 : 115296 - 115305
  • [46] Network Meddling Detection Using Machine Learning Empowered with Blockchain Technology
    Nasir, Muhammad Umar
    Khan, Safiullah
    Mehmood, Shahid
    Khan, Muhammad Adnan
    Zubair, Muhammad
    Hwang, Seong Oun
    SENSORS, 2022, 22 (18)
  • [47] Detection of Network Attacks in a Heterogeneous Industrial Network Based on Machine Learning
    Vulfin, A. M.
    PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (04) : 333 - 345
  • [48] Anomaly Detection in Encrypted Identity Resolution Traffic based on Machine Learning
    Zhu, Zhishen
    Zhou, Hao
    Yang, Qingya
    Wang, Chonghua
    Li, Zhen
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY, QRS, 2022, : 264 - 275
  • [49] Network anomaly detection and security defense technology based on machine learning: A review
    Liu, Ruixiao
    Shi, Jing
    Chen, Xingyu
    Lu, Cuiying
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 119
  • [50] Audio-Based Machine Learning Model for Traffic Congestion Detection
    Gatto, Rubens Cruz
    Quartucci Forster, Carlos Henrique
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (11) : 7200 - 7207