A fully automated pipeline for brain structure segmentation in multiple sclerosis

被引:5
|
作者
Gonzalez-Villa, Sandra [1 ,2 ]
Oliver, Arnau [1 ]
Huo, Yuankai [2 ]
Llado, Xavier [1 ]
Landman, Bennett A. [2 ]
机构
[1] Univ Girona, Inst Comp Vis & Robot, P-4,Campus Montilivi, Girona 17003, Spain
[2] Vanderbilt Univ, Elect Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
关键词
Brain structures; Parcellation; Multiple sclerosis lesions; Segmentation; MRI; Multi-atlas; Label fusion; ATROPHY; CLASSIFICATION; LESIONS; FUSION; VOLUME;
D O I
10.1016/j.nicl.2020.102306
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Accurate volume measurements of the brain structures are important for treatment evaluation and disease follow-up in multiple sclerosis (MS) patients. With the aim of obtaining reproducible measurements and avoiding the intra-/inter-rater variability that manual delineations introduce, several automated brain structure segmentation strategies have been proposed in recent years. However, most of these strategies tend to be affected by the abnormal MS lesion intensities, which corrupt the structure segmentation result. To address this problem, we recently reformulated two label fusion strategies of the state of the art, improving their segmentation performance on the lesion areas. Here, we integrate these reformulated strategies in a completely automated pipeline that includes pre-processing (inhomogeneity correction and intensity normalization), atlas selection, masked registration and label fusion, and combine them with an automated lesion segmentation method of the state of the art. We study the effect of automating the lesion mask acquisition on the structure segmentation result, analyzing the output of the proposed pipeline when used in combination with manually and automatically segmented lesion masks. We further analyze the effect of those masks on the segmentation result of the original label fusion strategies when combined with the well-established pre-processing step of lesion filling. The experiments performed show that, when the original methods are used to segment the lesion-filled images, significant structure volume differences are observed in a comparison between manually and automatically segmented lesion masks. The results indicate a mean volume decrease of 1.13% +/- 1.93 in the cerebrospinal fluid, and a mean volume increase of 0.13% +/- 0.14 and 0.05% +/- 0.08 in the cerebral white matter and cerebellar gray matter, respectively. On the other hand, no significant volume differences were found when the proposed automated pipeline was used for segmentation, which demonstrates its robustness against variations in the lesion mask used.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An end to end automated pipeline for brain structure segmentation in multiple sclerosis patients
    Gonzalez-Villa, S.
    Valverde, S.
    Cabezas, M.
    Huo, Y.
    Oliver, A.
    Ramio-Torrenta, L.
    Landman, B. A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 256 - 257
  • [2] Fully automated segmentation of multiple sclerosis lesions in multispectral MRI
    Wels M.
    Huber M.
    Hornegger J.
    Pattern Recogn. Image Anal., 2008, 2 (347-350): : 347 - 350
  • [3] Rapid and reliable, fully-automated brainstem segmentation for application in multiple sclerosis
    Sander, L.
    Andermatt, S.
    Pezold, S.
    Amann, M.
    Meier, D.
    Sinnecker, T.
    Wendebourg, M. J.
    Naegelin, Y.
    Granziera, C.
    Kappos, L.
    Wuerfel, J.
    Cattin, P.
    Schlaeger, R.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 204 - 204
  • [4] Brain structure segmentation in the presence of multiple sclerosis lesions
    Gonzalez-Villa, Sandra
    Oliver, Arnau
    Huo, Yuankai
    Llado, Xavier
    Landman, Bennett A.
    NEUROIMAGE-CLINICAL, 2019, 22
  • [5] Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches
    Llado, Xavier
    Oliver, Arnau
    Cabezas, Mariano
    Freixenet, Jordi
    Vilanova, Joan C.
    Quiles, Ana
    Valls, Laia
    Ramio-Torrenta, Lluis
    Rovira, Alex
    INFORMATION SCIENCES, 2012, 186 (01) : 164 - 185
  • [6] Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling
    Valverde, Sergi
    Oliver, Arnau
    Roura, Eloy
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Sastre-Garriga, Jaume
    Montalban, Xavier
    Rovira, Alex
    Llado, Xavier
    NEUROIMAGE-CLINICAL, 2015, 9 : 640 - 647
  • [7] MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions
    Valcarcel, Alessandra M.
    Linn, Kristin A.
    Vandekar, Simon N.
    Satterthwaite, Theodore D.
    Muschelli, John
    Calabresi, Peter A.
    Pham, Dzung L.
    Martin, Melissa Lynne
    Shinohara, Russell T.
    JOURNAL OF NEUROIMAGING, 2018, 28 (04) : 389 - 398
  • [8] Evaluation of two automated lesion segmentation and filling pipelines for brain tissue segmentation of multiple sclerosis patients
    Valverde, S.
    Oliver, A.
    Roura, E.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Sastre-Garriga, J.
    Montalban, X.
    Rovira, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 : 177 - 178
  • [9] Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation
    Gonzalez-Villa, Sandra
    Valverde, Sergi
    Cabezas, Mariano
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Oliver, Arnau
    Llado, Xavier
    NEUROIMAGE-CLINICAL, 2017, 15 : 228 - 238
  • [10] Do multiple sclerosis lesions affect automatic brain structure segmentation?
    Gonzalez, S.
    Valverde, S.
    Cabezas, M.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrent, L.
    Rovira, A.
    Oliver, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 257 - 258