Designs and technologies for plasma-facing wall protection in EU DEMO

被引:20
|
作者
Barrett, T. R. [1 ]
Chuilon, B. [1 ]
Kovari, M. [1 ]
Hernandez, D. Leon [1 ]
Richiusa, M. L. [1 ]
Adame, E. Rosa [1 ]
Tivey, R. [1 ]
Vizvary, Z. [1 ]
Xue, Y. [1 ]
Maviglia, F. [2 ]
机构
[1] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[2] EUROfus Consortium, PPPT Dept, Boltzmannstr 2, Garching, Germany
基金
英国工程与自然科学研究理事会;
关键词
DEMO reactor; plasma-facing components; limiter engineering design; critical heat flux; PFC engineering; wall protection; SIMULATIONS; PROGRESS;
D O I
10.1088/1741-4326/ab085b
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The EU DEMO plasma is almost completely enveloped by large breeding blanket segments for tritium breeding and power extraction. Shaping of the blanket plasma-facing wall in 3D may prove to be essential, but this strategy alone is not sufficient to protect against anticipated transient plasma events. The high heat flux wall-limiter approach used in ITER is not thought to be viable in a tritium self-sufficient power reactor, and so in EU DEMO wall protection using discrete limiters is pursued. Two types of discrete limiter are described in this paper. One is an equatorial port limiter designed to handle the power during the plasma start-up phase, making use of water-cooled tungsten/CuCrZr monoblock technology. The second is the upper limiter, featuring a plasma-facing component designed specifically for extreme transient loading due to a vertical displacement event. The heat flux channelling and thermal barrier features of this design are shown to considerably reduce CuCrZr pipe temperature, and so reduce the likelihood of catastrophic failure. A preliminary neutronic calculation has shown that the impact of these discrete limiters on overall tritium breeding ratio is relatively low.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Plasma-facing materials for fusion devices
    Rainer Behrisch
    Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2010, 4 : 549 - 562
  • [32] Erosion of plasma-facing components in ITER
    Federici, G
    Wuerz, H
    Janeschitz, G
    Tivey, R
    FUSION ENGINEERING AND DESIGN, 2002, 61-62 : 81 - 94
  • [33] HYDROGEN RECOMBINATION ON PLASMA-FACING MATERIALS
    SHU, WM
    HAYASHI, Y
    OKUNO, K
    JOURNAL OF APPLIED PHYSICS, 1994, 75 (11) : 7531 - 7537
  • [34] Plasma-Facing Components of the TRT Tokamak
    Mazul, I., V
    Giniyatulin, R. N.
    Kavin, A. A.
    Litunovskii, N., V
    Makhankov, A. N.
    Piskarev, P. Yu
    Tanchuk, V. N.
    PLASMA PHYSICS REPORTS, 2021, 47 (12) : 1220 - 1237
  • [35] Plasma-facing material alternatives to tungsten
    Brooks, J. N.
    El-Guebaly, L.
    Hassanein, A.
    Sizyuk, T.
    NUCLEAR FUSION, 2015, 55 (04)
  • [36] Release conditions of dust particle from plasma-facing wall in oblique magnetic field
    Tomita, Y.
    Kawamura, G.
    Smirnov, R.
    Takizuka, T.
    Tskhakaya, D.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 164 - 167
  • [37] Nitrogen removal from plasma-facing components by ion cyclotron wall conditioning in TEXTOR
    Carrasco, A. G.
    Wauters, T.
    Petersson, P.
    Drenik, A.
    Rubel, M.
    Crombe, K.
    Douai, D.
    Fortuna, E.
    Kogut, D.
    Kreter, A.
    Lyssoivan, A.
    Moeller, S.
    Pisarek, M.
    Vervier, M.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 688 - 692
  • [38] EFFECTS OF PLASMA DISRUPTION ON STRUCTURAL AND PLASMA-FACING MATERIALS
    AKIBA, M
    MADARAME, H
    JOURNAL OF NUCLEAR MATERIALS, 1994, 212 (pt A) : 90 - 96
  • [39] Plasma temperature rise toward the plasma-facing surface
    Nishijima, D.
    Doerner, R. P.
    Seraydarian, R. P.
    De Temmerman, G.
    van der Meiden, H. J.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 440 - 444
  • [40] Two-dimensional simulation study on charging of dust particle on plasma-facing wall
    Smirnov, R.
    Tomita, Y.
    Tskhakaya, D.
    Takizuka, T.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2006, 46 (7-9) : 623 - 627