Two-dimensional magnetoexciton-polariton

被引:5
作者
Moskalenko, Sveatoslav A. [1 ]
Podlesny, Igor V. [1 ]
Liberman, Michael A. [2 ]
Novikov, Boris V. [3 ]
机构
[1] Moldavian Acad Sci, Inst Appl Phys, MD-2028 Kishinev, Moldova
[2] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden
[3] St Petersburg State Univ, Inst Phys, Dept Solid State Phys, St Petersburg 198504, Russia
关键词
magnetoexciton; polariton; two-dimensional electron-hole system; PERPENDICULAR MAGNETIC-FIELD; BOSE-EINSTEIN CONDENSATION; EXCITON-POLARITONS; PHASE;
D O I
10.1117/1.JNP.6.061806
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The Hamiltonian describing the interaction of the two-dimensional (2-D) magnetoexcitons with photons propagating with arbitrary-oriented wave vectors in the three-dimensional (3-D) space is deduced. The magnetoexcitons are characterized by the numbers n(e) and n(h) of the electron and hole Landau quantizations, by circular polarization (sigma) over right arrow (M) of the holes in the p-type valence bands and by in-plane wave vectors (k) over right arrow (parallel to). The photons are characterized by the wave vectors (k) over right arrow with in-plane component (k) over right arrow (parallel to) and perpendicular component k(z), which is quantized in the case of microresonator. The interaction is governed by the conservation law of the in-plane components (k) over right arrow (parallel to)of the magnetoexcitons and photons and by the rotational symmetry around the axis perpendicular to the layer, which leads to the alignment of the magnetoexcitons under the influence of the photons with circular polarization (sigma) over right arrow (+/-)((k) over right arrow) and with probability proportional to vertical bar (sigma) over right arrow (+/-)((k) over right arrow) . (sigma) over right arrow (M)*vertical bar(2.) (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JNP.6.061806]
引用
收藏
页数:11
相关论文
共 26 条
[1]   Bose-Einstein condensation of trapped polaritons in two-dimensional electron-hole systems in a high magnetic field [J].
Berman, Oleg L. ;
Kezerashvili, Roman Ya. ;
Lozovik, Yurii E. .
PHYSICAL REVIEW B, 2009, 80 (11)
[2]   BOSE-EINSTEIN CONDENSATION OF EXCITONS [J].
BLATT, JM ;
BRANDT, W ;
BOER, KW .
PHYSICAL REVIEW, 1962, 126 (05) :1691-&
[3]   Exciton-polariton Bose-Einstein condensation [J].
Deng, Hui ;
Haug, Hartmut ;
Yamamoto, Yoshihisa .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1489-1537
[4]   INTENSITY OF OPTICAL ABSORPTION BY EXCITONS [J].
ELLIOTT, RJ .
PHYSICAL REVIEW, 1957, 108 (06) :1384-1389
[5]   EFFECTS OF CONFIGURATION INTERACTION ON INTENSITIES AND PHASE SHIFTS [J].
FANO, U .
PHYSICAL REVIEW, 1961, 124 (06) :1866-&
[6]   THEORY OF THE CONTRIBUTION OF EXCITONS TO THE COMPLEX DIELECTIC CONSTANT OF CRYSTALS [J].
HOPFIELD, JJ .
PHYSICAL REVIEW, 1958, 112 (05) :1555-1567
[7]   Bose-Einstein condensation of exciton polaritons [J].
Kasprzak, J. ;
Richard, M. ;
Kundermann, S. ;
Baas, A. ;
Jeambrun, P. ;
Keeling, J. M. J. ;
Marchetti, F. M. ;
Szymanska, M. H. ;
Andre, R. ;
Staehli, J. L. ;
Savona, V. ;
Littlewood, P. B. ;
Deveaud, B. ;
Dang, Le Si .
NATURE, 2006, 443 (7110) :409-414
[8]  
Kavokin A., 2003, CAVITY POLARITONS, V32, P234
[9]  
KELDYSH LV, 1968, SOV PHYS JETP-USSR, V27, P521
[10]  
KNOX RS, 1963, THEORY EXCITONS, P207