On the commutation graph of cyclic TI-subgroups in linear groups

被引:0
作者
Zyulyarkina, N. D. [1 ]
机构
[1] S Ural State Univ, Chelyabinsk 454080, Russia
关键词
finite group; cyclic TI-subgroup; commutation graph; FINITE-GROUPS; ORDER;
D O I
10.1134/S0081543812090143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the commutation graph I"(A) of a cyclic TI-subgroup A of order 4 in a finite group G with quasisimple generalized Fitting subgroup F*(G). It is proved that, if F*(G) is a linear group, then the graph I"(A) is either a coclique or an edge-regular graph but not a coedge-regular graph.
引用
收藏
页码:S175 / S181
页数:7
相关论文
共 8 条
[1]  
HARRIS ME, 1982, T AM MATH SOC, V272, P1
[2]   A NOTE ON TI-SUBGROUPS [J].
HOCHHEIM, Y ;
TIMMESFELD, F .
ARCHIV DER MATHEMATIK, 1988, 51 (02) :97-103
[3]  
Makhnev A. A., 1985, MATH USSR SB, V55, P237
[4]   A REDUCTION THEOREM FOR TI-SUBGROUPS [J].
MAKHNEV, AA .
MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (02) :299-311
[5]   FINITE GROUPS OF EVEN ORDER IN WHICH SYLOW 2-GROUPS ARE INDEPENDENT [J].
SUZUKI, M .
ANNALS OF MATHEMATICS, 1964, 80 (01) :58-&
[6]  
Zyulyarkina N. D., 1996, ISSUES ALGEBRA LOGIC, P89
[7]  
ZYULYARKINA ND, 1994, T I MAT MEKH URO RAN, V3, P41
[8]  
ZYULYARKINA ND, 1992, T I MAT MEKH URO RAN, V2, P19