Completely positive definite functions and Bochner's theorem for locally compact quantum groups

被引:13
作者
Daws, Matthew [1 ]
Salmi, Pekka [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Oulu, Dept Math Sci, FI-90014 Oulu, Finland
基金
英国工程与自然科学研究理事会;
关键词
Quantum group; Positive definite function; Bochner's theorem; UNIFORM CONTINUITY; PROPERTY T; ALGEBRAS; MULTIPLIERS;
D O I
10.1016/j.jfa.2013.01.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two versions of Bochner's theorem for locally compact quantum groups. First, every completely positive definite "function" on a locally compact quantum group G arises as a transform of a positive functional on the universal C*-algebra C-0(ll) ((G) over cap) of the dual quantum group. Second, when G is coamenable, complete positive definiteness may be replaced with the weaker notion of positive definiteness, which models the classical notion. A counterexample is given to show that the latter result is not true in general. To prove these results, we show two auxiliary results of independent interest: products are linearly dense in L-#(1)(G) and when G is coamenable, the Banach *-algebra L-#(1)(G) has a contractive bounded approximate identity. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1525 / 1546
页数:22
相关论文
共 47 条
[21]   A Note on Amenability of Locally Compact Quantum Groups [J].
Soltan, Piotr M. ;
Viselter, Ami .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (02) :424-430
[22]   Property T for locally compact quantum groups [J].
Chen, Xiao ;
Ng, Chi-Keung .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (03)
[23]   Weak mixing for locally compact quantum groups [J].
Viselter, Ami .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 :1657-1680
[24]   POINTWISE Lpt-FUNCTIONS ON LOCALLY COMPACT GROUPS [J].
Abtahi, Fatemeh .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (03) :169-180
[25]   Convex Characteristics of Quaternionic Positive Definite Functions on Abelian Groups [J].
Liu, Jingning ;
Zhu, Zeping .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (03)
[26]   Wiener’s problem for positive definite functions [J].
D. V. Gorbachev ;
S. Yu. Tikhonov .
Mathematische Zeitschrift, 2018, 289 :859-874
[27]   Convolution semigroups on locally compact quantum groups and noncommutative Dirichlet forms [J].
Skalski, Adam ;
Viselter, Ami .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 124 :59-105
[28]   Wiener's problem for positive definite functions [J].
Gorbachev, D. V. ;
Tikhonov, S. Yu. .
MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (3-4) :859-874
[29]   ACTIONS, QUOTIENTS AND LATTICES OF LOCALLY COMPACT QUANTUM GROUPS [J].
Brannan, Michael ;
Chirvasitu, Alexandru ;
Viselter, Ami .
DOCUMENTA MATHEMATICA, 2020, 25 :2553-2582
[30]   Duality, cohomology, and geometry of locally compact quantum groups [J].
Kalantar, Mehrdad ;
Neufang, Matthias .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) :22-33