Completely positive definite functions and Bochner's theorem for locally compact quantum groups

被引:12
|
作者
Daws, Matthew [1 ]
Salmi, Pekka [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Oulu, Dept Math Sci, FI-90014 Oulu, Finland
基金
英国工程与自然科学研究理事会;
关键词
Quantum group; Positive definite function; Bochner's theorem; UNIFORM CONTINUITY; PROPERTY T; ALGEBRAS; MULTIPLIERS;
D O I
10.1016/j.jfa.2013.01.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two versions of Bochner's theorem for locally compact quantum groups. First, every completely positive definite "function" on a locally compact quantum group G arises as a transform of a positive functional on the universal C*-algebra C-0(ll) ((G) over cap) of the dual quantum group. Second, when G is coamenable, complete positive definiteness may be replaced with the weaker notion of positive definiteness, which models the classical notion. A counterexample is given to show that the latter result is not true in general. To prove these results, we show two auxiliary results of independent interest: products are linearly dense in L-#(1)(G) and when G is coamenable, the Banach *-algebra L-#(1)(G) has a contractive bounded approximate identity. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1525 / 1546
页数:22
相关论文
共 47 条
  • [1] On a separation property of positive definite functions on locally compact groups
    Eberhard Kaniuth
    Anthony T. Lau
    Mathematische Zeitschrift, 2003, 243 : 161 - 177
  • [2] Extending positive definite functions from subgroups of nilpotent locally compact groups
    Kaniuth, Eberhard
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (02) : 559 - 576
  • [3] Extension and separation properties of positive definite functions on locally compact groups
    Kaniuth, Eberhard
    Lau, Anthony T.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) : 447 - 463
  • [4] On a separation property of positive definite functions on locally compact groups.
    Kaniuth, E
    Lau, AT
    MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (01) : 161 - 177
  • [5] Separation properties for positive-definite functions on locally compact quantum groups and for associated von Neumann algebras
    Jacek Krajczok
    Adam Skalski
    Selecta Mathematica, 2025, 31 (3)
  • [6] On Positive Definiteness Over Locally Compact Quantum Groups
    Runde, Volker
    Viselter, Ami
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (05): : 1067 - 1095
  • [7] Closed quantum subgroups of locally compact quantum groups
    Daws, Matthew
    Kasprzak, Pawel
    Skalski, Adam
    Soltan, Piotr M.
    ADVANCES IN MATHEMATICS, 2012, 231 (06) : 3473 - 3501
  • [8] YOUNG'S INEQUALITY FOR LOCALLY COMPACT QUANTUM GROUPS
    Liu, Zhengwei
    Wang, Simeng
    Wu, Jinsong
    JOURNAL OF OPERATOR THEORY, 2017, 77 (01) : 109 - 131
  • [9] The Haagerup property for locally compact quantum groups
    Daws, Matthew
    Fima, Pierre
    Skalski, Adam
    White, Stuart
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 : 189 - 229
  • [10] Extensions of positive definite functions on free groups
    Bakonyi, M.
    Timotin, D.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (01) : 31 - 49