Completely positive definite functions and Bochner's theorem for locally compact quantum groups

被引:13
作者
Daws, Matthew [1 ]
Salmi, Pekka [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Oulu, Dept Math Sci, FI-90014 Oulu, Finland
基金
英国工程与自然科学研究理事会;
关键词
Quantum group; Positive definite function; Bochner's theorem; UNIFORM CONTINUITY; PROPERTY T; ALGEBRAS; MULTIPLIERS;
D O I
10.1016/j.jfa.2013.01.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two versions of Bochner's theorem for locally compact quantum groups. First, every completely positive definite "function" on a locally compact quantum group G arises as a transform of a positive functional on the universal C*-algebra C-0(ll) ((G) over cap) of the dual quantum group. Second, when G is coamenable, complete positive definiteness may be replaced with the weaker notion of positive definiteness, which models the classical notion. A counterexample is given to show that the latter result is not true in general. To prove these results, we show two auxiliary results of independent interest: products are linearly dense in L-#(1)(G) and when G is coamenable, the Banach *-algebra L-#(1)(G) has a contractive bounded approximate identity. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1525 / 1546
页数:22
相关论文
共 30 条
[1]  
[Anonymous], 1964, Bull. Soc. Math. France, DOI DOI 10.24033/BSMF.1607
[2]  
[Anonymous], 1977, North-Holland Mathematical Library
[3]   Amenability and co-amenability for locally compact quantum groups [J].
Bédos, E ;
Tuset, L .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (08) :865-884
[4]   THE DUAL OF THE HAAGERUP TENSOR PRODUCT [J].
BLECHER, DP ;
SMITH, RR .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 45 :126-144
[5]  
Brannan M., PREPRINT
[6]   Approximation properties for free orthogonal and free unitary quantum groups [J].
Brannan, Michael .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 672 :223-251
[7]  
Dales H. G., 2000, BANACH ALGEBRAS AUTO
[8]   COMPLETELY POSITIVE MULTIPLIERS OF QUANTUM GROUPS [J].
Daws, Matthew .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (12)
[9]  
Daws M, 2010, DISS MATH, P5
[10]  
Day M. M., 1957, ILLINOIS J MATH, V1, P509