METRIC DIMENSION OF ANDRASFAI GRAPHS

被引:0
作者
Pejman, S. Batool [1 ]
Payrovi, Shiroyeh [1 ]
Behtoei, Ali [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Math, Fac Sci, POB 34148-96818, Qazvin, Iran
关键词
resolving set; metric dimension; Andrasfai graph; Cayley graph; Cartesian product; CARTESIAN PRODUCTS;
D O I
10.7494/OpMath.2019.39.3.415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set W subset of V (G) is called a resolving set, if for each pair of distinct vertices u, v is an element of V (G) there exists t is an element of W such that d(u, t) not equal d(v, t), where d(x, y) is the distance between vertices x and y. The cardinality of a minimum resolving set for G is called the metric dimension of G and is denoted by dim(M)(G). This parameter has many applications in different areas. The problem of finding metric dimension is NP-complete for general graphs but it is determined for trees and some other important families of graphs. In this paper, we determine the exact value of the metric dimension of Andrasfai graphs, their complements and And(k)square P-n. Also, we provide upper and lower bounds for dim(M)(And(k)square C-n).
引用
收藏
页码:415 / 423
页数:9
相关论文
共 24 条
[1]   Base size, metric dimension and other invariants of groups and graphs [J].
Bailey, Robert F. ;
Cameron, Peter J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :209-242
[2]   Network discovery and verification [J].
Beerliova, Zuzana ;
Eberhard, Felix ;
Erlebach, Thomas ;
Hall, Alexander ;
Hoffmann, Michael ;
Mihal'ak, Matus ;
Ram, L. Shankar .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2006, 24 (12) :2168-2181
[3]  
Behtoei A., 2017, ALG STRUC APPL, V4, P1
[4]  
Behtoei A, 2017, DISCRET MATH ALGORIT, V9, DOI 10.1142/S1793830917500276
[5]  
Bollobás B, 2013, ELECTRON J COMB, V20
[6]   On the metric dimension of cartesian products of graphs [J].
Caceres, Jose ;
Hernando, Carmen ;
Mora, Merce ;
Pelayo, Ignacio M. ;
Puertas, Maria L. ;
Seara, Carlos ;
Wood, David R. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) :423-441
[7]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[8]  
Chau K, 2017, OPUSC MATH, V37, P509, DOI 10.7494/OpMath.2017.37.4.509
[9]   MASTERMIND [J].
CHVATAL, V .
COMBINATORICA, 1983, 3 (3-4) :325-329
[10]   The metric dimension of Cayley digraphs [J].
Fehr, M ;
Gosselin, S ;
Oellermann, OR .
DISCRETE MATHEMATICS, 2006, 306 (01) :31-41