Backlund transformation and soliton solutions in terms of the Wronskian for the Kadomtsev-Petviashvili-based system in fluid dynamics

被引:32
作者
Du, Zhong
Tian, Bo [1 ]
Xie, Xi-Yang
Chai, Jun
Wu, Xiao-Yu
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 90卷 / 04期
基金
中国国家自然科学基金;
关键词
Fluid dynamics; Kadomtsev-Petviashvili-based system; Wronskian; Hirota method; soliton solutions; Backlund transformation; BROER-KAUP SYSTEM; NONLINEAR SCHRODINGER-EQUATION; MULTISOLITON SOLUTIONS; SYMBOLIC COMPUTATION;
D O I
10.1007/s12043-018-1532-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, investigation is made on a Kadomtsev-Petviashvili-based system, which can be seen in fluid dynamics, biology and plasma physics. Based on the Hirota method, bilinear form and Backlund transformation (BT) are derived. N-soliton solutions in terms of the Wronskian are constructed, and it can be verified that the N-soliton solutions in terms of the Wronskian satisfy the bilinear form and Backlund transformation. Through the N-soliton solutions in terms of the Wronskian, we graphically obtain the kink-dark-like solitons and parallel solitons, which keep their shapes and velocities unchanged during the propagation.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
Ablowitz M., 1992, SOLITONS NONLINEAR E, Vsecond
[2]  
[Anonymous], 1980, DIRECT METHOD SOLITO
[3]  
[Anonymous], 1980, Solitons
[4]  
Bai C L, 2006, PHYS SCR, V429
[5]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[6]   Soliton solutions of the Kadomtsev-Petviashvili II equation [J].
Biondini, G ;
Chakravarty, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)
[7]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[8]   Classification of the line-soliton solutions of KPII [J].
Chakravarty, Sarbarish ;
Kodama, Yuji .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (27)
[9]   Solitary wave fission and fusion in the (2+1)-dimensional generalized Broer-Kaup system [J].
Dai, Chaoqing ;
Liu, Cuiyun .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (03) :271-279
[10]   Response to "Comment on 'A new mathematical approach for finding the solitary waves in dusty plasma'" [Phys. Plasmas 6, 4392 (1999)] [J].
Das, GC ;
Sarma, J .
PHYSICS OF PLASMAS, 1999, 6 (11) :4394-4397