Dimension-dependent bounds for Grobner bases of polynomial ideals

被引:18
作者
Mayr, Ernst W. [1 ]
Ritscher, Stephan [1 ]
机构
[1] Tech Univ Munich, D-85748 Garching, Germany
关键词
Grobner basis; Degree bound; Polynomial ideal; Ideal dimension; Regular sequence; Noether normalization; Cone decomposition; COMMUTATIVE THUE SYSTEMS;
D O I
10.1016/j.jsc.2011.12.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a basis F of a polynomial ideal I in K[x(1),...,x(n)] with degrees deg(F) <= d, the degrees of the reduced Grobner basis G w.r.t. any admissible monomial ordering are known to be double exponential in the number of indeterminates in the worst case, i.e. deg(G) = d(2 theta(n)). This was established in Mayr and Meyer (1982) and Dube (1990). We modify both constructions in order to give worst case bounds depending on the ideal dimension proving that deg(G) = d(n theta(1)2 theta(r)) for r-dimensional ideals (in the worst case). (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:78 / 94
页数:17
相关论文
共 36 条
[31]   Solving Systems of Polynomial Equations with Symmetries Using SAGBI-Grobner Bases [J].
Faugere, Jean-Charles ;
Rahmany, Sajjad .
ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, :151-158
[32]   A Divide-and-conquer Algorithm for Computing Grobner Bases of Syzygies in Finite Dimension [J].
Naldi, Simone ;
Neiger, Vincent .
PROCEEDINGS OF THE 45TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2020, 2020, :380-387
[33]   MXL3: An Efficient Algorithm for Computing Grobner Bases of Zero-Dimensional Ideals [J].
Mohamed, Mohamed Saied Emarn ;
Cabarcas, Daniel ;
Ding, Jintai ;
Buchmann, Johannes ;
Bulygin, Stanislav .
INFORMATION SECURITY AND CRYPTOLOGY - ISISC 2009, 2010, 5984 :87-+
[34]   Grobner bases in difference-differential modules and difference-differential dimension polynomials [J].
Zhou Meng ;
Winkler, Franz .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (09) :1732-1752
[35]   Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals [J].
A. I. Zobnin .
Programming and Computer Software, 2010, 36 :75-82
[36]   ON HOMOGENEOUS k-BUCHSBAUM POLYNOMIAL IDEALS, WITH ALGORITHMS IF THE KRULL DIMENSION IS LESS THAN OR EQUAL TO TWO [J].
Benjamin, E. ;
Bresinsky, H. .
HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (03) :637-647