Dimension-dependent bounds for Grobner bases of polynomial ideals

被引:18
作者
Mayr, Ernst W. [1 ]
Ritscher, Stephan [1 ]
机构
[1] Tech Univ Munich, D-85748 Garching, Germany
关键词
Grobner basis; Degree bound; Polynomial ideal; Ideal dimension; Regular sequence; Noether normalization; Cone decomposition; COMMUTATIVE THUE SYSTEMS;
D O I
10.1016/j.jsc.2011.12.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a basis F of a polynomial ideal I in K[x(1),...,x(n)] with degrees deg(F) <= d, the degrees of the reduced Grobner basis G w.r.t. any admissible monomial ordering are known to be double exponential in the number of indeterminates in the worst case, i.e. deg(G) = d(2 theta(n)). This was established in Mayr and Meyer (1982) and Dube (1990). We modify both constructions in order to give worst case bounds depending on the ideal dimension proving that deg(G) = d(n theta(1)2 theta(r)) for r-dimensional ideals (in the worst case). (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:78 / 94
页数:17
相关论文
共 36 条
[21]   Computing Grobner bases of pure binomial ideals via submodules of Zn [J].
Boffi, Giandomenico ;
Logar, Alessandro .
JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (10) :1297-1308
[22]   Fast Grobner basis computation and polynomial reduction for generic bivariate ideals [J].
van der Hoeven, Joris ;
Larrieu, Robin .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (06) :509-539
[23]   Criteria for Finite Difference Grobner Bases of Normal Binomial Difference Ideals [J].
Chen, Yu-Ao ;
Gao, Xiao-Shan .
PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, :93-100
[24]   Grobner bases with respect to several orderings and multivariable dimension polynomials [J].
Levin, Alexander B. .
JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (05) :561-578
[25]   Properties of entire functions over polynomial rings via Grobner bases [J].
Apel, J ;
Stückrad, J ;
Tworzewski, P ;
Winiarski, T .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2003, 14 (01) :1-10
[26]   Decomposing Polynomial Sets Simultaneously into Grobner Bases and Normal Triangular Sets [J].
Dong, Rina ;
Mou, Chenqi .
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2017, 2017, 10490 :77-92
[27]   Computing polynomial univariate representations of zero-dimensional ideals by Grobner basis [J].
Ma XiaoDong ;
Sun Yao ;
Wang DingKang .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (06) :1293-1302
[28]   Many toric ideals generated by quadratic binomials possess no quadratic Grobner bases [J].
Hibi, Takayuki ;
Nishiyama, Kenta ;
Ohsugi, Hidefumi ;
Shikama, Akihiro .
JOURNAL OF ALGEBRA, 2014, 408 :138-146
[29]   Generalized Grobner Bases and New Properties of Multivariate Difference Dimension Polynomials [J].
Levin, Alexander .
PROCEEDINGS OF THE 2021 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2021, 2021, :273-280
[30]   Grobner Bases with Respect to Several Term Orderings and Multivariate Dimension Polynomials [J].
Levin, Alexander B. .
ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2007, :251-260