Dimension-dependent bounds for Grobner bases of polynomial ideals

被引:18
|
作者
Mayr, Ernst W. [1 ]
Ritscher, Stephan [1 ]
机构
[1] Tech Univ Munich, D-85748 Garching, Germany
关键词
Grobner basis; Degree bound; Polynomial ideal; Ideal dimension; Regular sequence; Noether normalization; Cone decomposition; COMMUTATIVE THUE SYSTEMS;
D O I
10.1016/j.jsc.2011.12.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a basis F of a polynomial ideal I in K[x(1),...,x(n)] with degrees deg(F) <= d, the degrees of the reduced Grobner basis G w.r.t. any admissible monomial ordering are known to be double exponential in the number of indeterminates in the worst case, i.e. deg(G) = d(2 theta(n)). This was established in Mayr and Meyer (1982) and Dube (1990). We modify both constructions in order to give worst case bounds depending on the ideal dimension proving that deg(G) = d(n theta(1)2 theta(r)) for r-dimensional ideals (in the worst case). (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:78 / 94
页数:17
相关论文
共 50 条
  • [1] Dimension-Dependent Upper Bounds for Grobner Bases
    Hashemi, Amir
    Seiler, Werner M.
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, : 189 - 196
  • [2] Polynomial ideals for sandpiles and their Grobner bases
    Cori, R
    Rossin, D
    Salvy, B
    THEORETICAL COMPUTER SCIENCE, 2002, 276 (1-2) : 1 - 15
  • [3] THE STRUCTURE OF POLYNOMIAL IDEALS AND GROBNER BASES
    DUBE, TW
    SIAM JOURNAL ON COMPUTING, 1990, 19 (04) : 750 - 773
  • [4] ON GENERATING SETS AND GROBNER BASES FOR POLYNOMIAL IDEALS
    BRESINSKY, H
    CURTIS, F
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (08) : 2271 - 2287
  • [5] GROBNER BASES AND PRIMARY DECOMPOSITION OF POLYNOMIAL IDEALS
    GIANNI, P
    TRAGER, B
    ZACHARIAS, G
    JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (2-3) : 149 - 167
  • [6] EXPLOITING CHORDAL STRUCTURE IN POLYNOMIAL IDEALS: A GROBNER BASES APPROACH
    Cifuentes, Diego
    Parrilo, Pablo A.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1534 - 1570
  • [7] GROBNER BASES FOR IDEALS IN UNIVARIATE POLYNOMIAL RINGS OVER VALUATION RINGS
    Roslavcev, Maja
    MATEMATICKI VESNIK, 2021, 73 (03): : 183 - 190
  • [8] GROBNER BASES FOR POLYNOMIAL IDEALS OVER COMMUTATIVE REGULAR-RINGS
    WEISPFENNING, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 378 : 336 - 347
  • [9] Grobner bases of contraction ideals
    Shibuta, Takafumi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (01) : 1 - 19
  • [10] Grobner bases of neural ideals
    Garcia, Rebecca
    Puente, Luis David Garcia
    Kruse, Ryan
    Liu, Jessica
    Miyata, Dane
    Petersen, Ethan
    Phillipson, Kaitlyn
    Shiu, Anne
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (04) : 553 - 571