Global wave-front sets of Banach, Frechet and modulation space types, and pseudo-differential operators

被引:21
作者
Coriasco, Sandro [1 ]
Johansson, Karoline [2 ]
Toft, Joachim [2 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10124 Turin, Italy
[2] Linnaeus Univ, Dept Comp Sci Phys & Math, Vaxjo, Sweden
关键词
Wave front; Fourier; Banach space; Modulation space; Micro-local; Pseudo-differential;
D O I
10.1016/j.jde.2013.01.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce global wave-front sets WFB(f), f is an element of'(R-d), with respect to suitable Banach or Frechet spaces B. An important special case is given by the modulation spaces B = M(omega,B), where omega is an appropriate weight function and B is a translation invariant Banach function space. We show that the standard properties for known notions of wave-front set extend to WFB(f). In particular, we prove that micro-locality and micro-ellipticity hold for a class of globally defined pseudo-differential operators Op(t)(alpha), acting continuously on the involved spaces. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3228 / 3258
页数:31
相关论文
共 29 条
[21]   ON PSEUDODIFFERENTIAL OPERATORS WITH SYMBOLS IN GENERALIZED SHUBIN CLASSES AND AN APPLICATION TO LANDAU-WEYL OPERATORS [J].
Luef, Franz ;
Rahbani, Zohreh .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (02) :59-72
[22]  
Luxemburg WAJ., 1971, Riesz spaces I
[23]  
MELROSE RB, 1994, LECT NOTES PURE APPL, V161, P85
[24]  
Parenti C., 1972, ANN MAT PUR APPL, V93, P359, DOI 10.1007/BF02412028
[25]   Micro-local analysis in Fourier Lebesgue and modulation spaces: part II [J].
Pilipovic, Stevan ;
Teofanov, Nenad ;
Toft, Joachim .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2010, 1 (03) :341-376
[26]   Micro-Local Analysis with Fourier Lebesgue Spaces. Part I [J].
Pilipovic, Stevan ;
Teofanov, Nenad ;
Toft, Joachim .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (03) :374-407
[27]   Changes of variables in modulation and Wiener amalgam spaces [J].
Ruzhansky, Michael ;
Sugimoto, Mitsuru ;
Toft, Joachim ;
Tomita, Naohito .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (16) :2078-2092
[28]   Continuity properties for modulation spaces, with applications to pseudo-differential calculus, II [J].
Toft, J .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2004, 26 (01) :73-106
[29]  
Toft J., 2009, CUBO, V11, P87