Global wave-front sets of Banach, Frechet and modulation space types, and pseudo-differential operators

被引:21
作者
Coriasco, Sandro [1 ]
Johansson, Karoline [2 ]
Toft, Joachim [2 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10124 Turin, Italy
[2] Linnaeus Univ, Dept Comp Sci Phys & Math, Vaxjo, Sweden
关键词
Wave front; Fourier; Banach space; Modulation space; Micro-local; Pseudo-differential;
D O I
10.1016/j.jde.2013.01.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce global wave-front sets WFB(f), f is an element of'(R-d), with respect to suitable Banach or Frechet spaces B. An important special case is given by the modulation spaces B = M(omega,B), where omega is an appropriate weight function and B is a translation invariant Banach function space. We show that the standard properties for known notions of wave-front set extend to WFB(f). In particular, we prove that micro-locality and micro-ellipticity hold for a class of globally defined pseudo-differential operators Op(t)(alpha), acting continuously on the involved spaces. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3228 / 3258
页数:31
相关论文
共 29 条
[1]  
[Anonymous], 1985, ANAL PARTIAL DIFFERE
[2]  
BOGGIATTO P., 1996, Mathematical Research, V92
[3]  
Cordes H. O., 1995, TECHNIQUE PSEUDODIFF
[4]   Wave front set at infinity and hyperbolic linear operators with multiple characteristics [J].
Coriasco, S ;
Maniccia, L .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 24 (04) :375-400
[5]  
Coriasco S., 2012, P C FOUR AN PSEUD DI
[6]  
CORIASCO S, 1999, REND SEM MAT U POL T, V57, P249
[7]   Local wave-front sets of Banach and Frechet types, and pseudo-differential operators [J].
Coriasco, Sandro ;
Johansson, Karoline ;
Toft, Joachim .
MONATSHEFTE FUR MATHEMATIK, 2013, 169 (3-4) :285-316
[8]  
Feichtinger H. G., 2006, Sampling Theory in Signal and Image Processing, V5, P109
[9]  
FEICHTINGER H. G., 2003, Wavelets and their applications, P99