New congruences on multiple harmonic sums and Bernoulli numbers

被引:0
作者
Wang, Liuquan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 97卷 / 1-2期
基金
中国国家自然科学基金;
关键词
congruences; Bernoulli numbers; multiple harmonic sums; CURIOUS CONGRUENCE;
D O I
10.5486/PMD.2020.8768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P-n denote the set of positive integers which are prime to n. Let B-n be the n-th Bernoulli number. For any prime p >= 11 and integer r >= 2, we prove that Sigma(l1+l2+ ... +l6 = pr l1, ... ,l6 is an element of Pp) 1/l(1)l(2)l(3)l(4)l(5)l(6) - 5!/18p(r-1) B-p-3(2) (mod p(r)). This extends a family of curious congruences. We also obtain other interesting congruences involving multiple harmonic sums and Bernoulli numbers.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 15 条
  • [1] A congruence involving harmonic sums modulo pα qβ
    Cai, Tianxin
    Shen, Zhongyan
    Jia, Lirui
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (05) : 1083 - 1094
  • [2] Chen K, 2017, J INTEGER SEQ, V20
  • [3] A simple proof of a curious congruence by Zhao
    Ji, CG
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3469 - 3472
  • [4] A family of super congruences involving multiple harmonic sums
    Mccoy, Megan
    Thielen, Kevin
    Wang, Liuquan
    Zhao, Jianqiang
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) : 109 - 128
  • [5] Shen Z., ARXIV150303156
  • [6] [沈忠燕 Shen Zhong Yan], 2012, [数学学报, Acta Mathematica Sinica], V55, P737
  • [7] CONGRUENCES INVOLVING ALTERNATING HARMONIC SUMS MODULO pαqβ
    Shen, Zhongyan
    Cai, Tianxin
    [J]. MATHEMATICA SLOVACA, 2018, 68 (05) : 975 - 980
  • [8] Wang L., 2014, J COMB NUMBER THEORY, V6, P209
  • [9] A new curious congruence involving multiple harmonic sums
    Wang, Liuquan
    [J]. JOURNAL OF NUMBER THEORY, 2015, 154 : 16 - 31
  • [10] A curious congruence modulo prime powers
    Wang, Liuquan
    Cai, Tianxin
    [J]. JOURNAL OF NUMBER THEORY, 2014, 144 : 15 - 24