On the role of the plant mitochondrial thioredoxin system during abiotic stress

被引:21
|
作者
Da Fonseca-Pereira, Paula [1 ,2 ]
Daloso, Danilo M. [3 ]
Gago, Jorge [4 ]
Nunes-Nesi, Adriano [2 ]
Araujo, Wagner L. [1 ,2 ]
机构
[1] Univ Fed Vicosa, Dept Biol Vegetal, Max Planck Partner Grp, Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Biol Vegetal, Vicosa, MG, Brazil
[3] Univ Fed Ceara, Dept Bioquim & Biol Mol, Fortaleza, Ceara, Brazil
[4] Univ Balearic Isl, Dept Biol, Res Grp Plant Biol Mediterranean Condit, Univ Illes Balears,Inst Agroenvironm & Water Econ, Carretera Valldemossa, Palma De Mallorca, Spain
关键词
Arabidopsis thaliana; metabolic acclimation; mitochondrial thioredoxin system; water limitation; stress conditions; REDOX REGULATION; GROWTH; DROUGHT; NUCLEUS; PHOTOSYNTHESIS; IDENTIFICATION; REDUCTASE; PROTEINS; CELL;
D O I
10.1080/15592324.2019.1592536
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Thiol-disulfide redox exchanges are widely distributed modifications of great importance for metabolic regulation in living cells. In general, the formation of disulfide bonds is controlled by thioredoxins (TRXs), ubiquitous proteins with two redox-active cysteine residues separated by a pair of amino acids. While the function of plastidial TRXs has been extensively studied, the role of the mitochondrial TRX system is much less well understood. Recent studies have demonstrated that the mitochondrial TRXs are required for the proper functioning of the major metabolic pathways, including stomatal function and antioxidant metabolism under sub-optimal conditions including drought and salinity. Furthermore, inactivation of mitochondrial TRX system leads to metabolite adjustments of both primary and secondary metabolism following drought episodes in arabidopsis, and makes the plants more resistant to salt stress. Here we discuss the implications of these findings, which clearly open up several research avenues to achieve a full understanding of the redox control of metabolism under environmental constraining conditions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A Central Role for Thiols in Plant Tolerance to Abiotic Stress
    Zagorchev, Lyuben
    Seal, Charlotte E.
    Kranner, Ilse
    Odjakova, Mariela
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (04) : 7405 - 7432
  • [2] The role of arbuscular mycorrhizal symbiosis in plant abiotic stress
    Wang, Qian
    Liu, Mengmeng
    Wang, Zhifan
    Li, Junrong
    Liu, Ke
    Huang, Dong
    FRONTIERS IN MICROBIOLOGY, 2024, 14
  • [3] Potential roles of mitochondrial carrier proteins in plant responses to abiotic stress
    Monteiro-Batista, Rita de Cassia
    Siqueira, Joao Antonio
    da Fonseca-Pereira, Paula
    Barreto, Pedro
    Feitosa-Araujo, Elias
    Araujo, Wagner L.
    Nunes-Nesi, Adriano
    JOURNAL OF EXPERIMENTAL BOTANY, 2025,
  • [4] Melatonin Role in Plant Growth and Physiology under Abiotic Stress
    Ahmad, Irshad
    Zhu, Guanglong
    Zhou, Guisheng
    Liu, Jiao
    Younas, Muhammad Usama
    Zhu, Yiming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (10)
  • [5] Molecular mechanisms controlling plant growth during abiotic stress
    Bechtold, Ulrike
    Field, Benjamin
    JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (11) : 2753 - 2758
  • [6] The role of sterols in plant response to abiotic stress
    Rogowska, Agata
    Szakiel, Anna
    PHYTOCHEMISTRY REVIEWS, 2020, 19 (06) : 1525 - 1538
  • [7] The role of sterols in plant response to abiotic stress
    Agata Rogowska
    Anna Szakiel
    Phytochemistry Reviews, 2020, 19 : 1525 - 1538
  • [8] The Role of Hydrogen Sulfide in Plant Roots during Development and in Response to Abiotic Stress
    Li, Hua
    Chen, Hongyu
    Chen, Lulu
    Wang, Chenyang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
  • [9] Progesterone as a Plant Physiochemical Regulator: Mechanisms and Efficacy in Alleviating Abiotic Stress
    El-Beltagi, Hossam S.
    Abdel-Haleem, Mohamed
    Rezk, Adel A.
    Khedr, Emad Hamdy
    JOURNAL OF CROP HEALTH, 2025, 77 (02)
  • [10] The Mitochondrial Thioredoxin System Contributes to the Metabolic Responses Under Drought Episodes in Arabidopsis
    da Fonseca-Pereira, Paula
    Daloso, Danilo M.
    Gago, Jorge
    de Oliveira Silva, Franklin Magnum
    Condori-Apfata, Jorge A.
    Florez-Sarasa, Igor
    Tohge, Takayuki
    Reichheld, Jean-Philippe
    Nunes-Nesi, Adriano
    Fernie, Alisdair R.
    Araujo, Wagner L.
    PLANT AND CELL PHYSIOLOGY, 2019, 60 (01) : 213 - 229