The Split Feasibility Problem in Hilbert Space

被引:0
作者
Wu Dingping [1 ]
Duan Qibin [1 ]
Wang Erli [1 ]
Zhao Hang [1 ]
机构
[1] Chengdu Univ Informat Technol, Dept Math, Chengdu 610225, Peoples R China
来源
PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON COMMUNICATION, ELECTRONICS AND AUTOMATION ENGINEERING | 2013年 / 181卷
关键词
Split feasibility problem; CQ algorithm; Ishikawa iterative algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to introduce and study Ishikawa iterative algorithms for solving the SFP in the setting of infinite-dimensional Hilbert spaces. The main results presented in this paper improve and extend some recent results done by Xu [Iterative methods for the split feasibility problem in infinite-dimensional Hilbert space, Inverse Problems 26 (2010) 105018]. At the end we prove that the accumulation of errors in Ishikawa iterative CQ algorithm is bounded in certain range.
引用
收藏
页码:1149 / 1154
页数:6
相关论文
共 50 条
[31]   Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem [J].
Chuang, Chih-Sheng .
OPTIMIZATION, 2016, 65 (04) :859-876
[32]   A gradient projection method for solving split equality and split feasibility problems in Hilbert spaces [J].
Phan Tu Vuong ;
Strodiot, Jean Jacques ;
Van Hien Nguyen .
OPTIMIZATION, 2015, 64 (11) :2321-2341
[33]   REGULARIZATION METHODS FOR SOLVING THE SPLIT FEASIBILITY PROBLEM WITH MULTIPLE OUTPUT SETS IN HILBERT SPACES [J].
Reich, Simeon ;
Tuyen, Truong Minh .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (02) :547-563
[34]   New Algorithms for Solving the Split Common Zero Point Problem in Hilbert Space [J].
Reich, Simeon ;
Tuyen, Truong Minh ;
Huyen, Phan Thi Van .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (10) :1012-1030
[35]   General Split Feasibility Problems in Hilbert Spaces [J].
Eslamian, Mohammad ;
Latif, Abdul .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[36]   A new iterative method for the split feasibility problem [J].
Dong, Qiao-Li ;
Jiang, Dan .
CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (03) :313-320
[37]   Composite projection algorithms for the split feasibility problem [J].
Yao, Yonghong ;
Yang, Pei-Xia ;
Kang, Shin Min .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (3-4) :693-700
[38]   AN UNCONSTRAINED OPTIMIZATION APPROACH TO THE SPLIT FEASIBILITY PROBLEM [J].
Xu, Hong-Kun ;
Alghamdi, Maryam A. ;
Shahzad, Naseer .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (10) :1891-1899
[39]   Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in Hilbert spaces [J].
Qiao-Li Dong ;
Yonghong Yao ;
Songnian He .
Optimization Letters, 2014, 8 :1031-1046
[40]   REGULARIZATION FOR THE SPLIT FEASIBILITY PROBLEM [J].
Xu, Hong-Kun ;
Alghamdi, Maryam A. ;
Shahzad, Naseer .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (03) :513-525