The Split Feasibility Problem in Hilbert Space

被引:0
作者
Wu Dingping [1 ]
Duan Qibin [1 ]
Wang Erli [1 ]
Zhao Hang [1 ]
机构
[1] Chengdu Univ Informat Technol, Dept Math, Chengdu 610225, Peoples R China
来源
PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON COMMUNICATION, ELECTRONICS AND AUTOMATION ENGINEERING | 2013年 / 181卷
关键词
Split feasibility problem; CQ algorithm; Ishikawa iterative algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to introduce and study Ishikawa iterative algorithms for solving the SFP in the setting of infinite-dimensional Hilbert spaces. The main results presented in this paper improve and extend some recent results done by Xu [Iterative methods for the split feasibility problem in infinite-dimensional Hilbert space, Inverse Problems 26 (2010) 105018]. At the end we prove that the accumulation of errors in Ishikawa iterative CQ algorithm is bounded in certain range.
引用
收藏
页码:1149 / 1154
页数:6
相关论文
共 50 条
[21]   A HYBRID STEEPEST DESCENT METHOD FOR A SPLIT FEASIBILITY PROBLEM IN HILBERT SPACES [J].
Cheng, Peng .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (11) :1813-1823
[22]   A KM-BASED ITERATION FOR A SPLIT FEASIBILITY PROBLEM IN HILBERT SPACES [J].
Cho, Sun young ;
Shang, Meijuan .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024
[23]   A fixed point method for solving a split feasibility problem in Hilbert spaces [J].
Xiaolong Qin ;
Lin Wang .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 :315-325
[24]   A fixed point method for solving a split feasibility problem in Hilbert spaces [J].
Qin, Xiaolong ;
Wang, Lin .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (01) :315-325
[25]   Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in Hilbert spaces [J].
Dong, Qiao-Li ;
Yao, Yonghong ;
He, Songnian .
OPTIMIZATION LETTERS, 2014, 8 (03) :1031-1046
[26]   Modified projection methods for the split feasibility problem and the multiple-sets split feasibility problem [J].
Zhao, Jinling ;
Zhang, Yanjun ;
Yang, Qingzhi .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1644-1653
[27]   Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces [J].
Xu, Hong-Kun .
INVERSE PROBLEMS, 2010, 26 (10)
[28]   Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces [J].
Yuchao Tang ;
Liwei Liu .
Journal of Inequalities and Applications, 2016
[29]   A New Hybrid CQ Algorithm for the Split Feasibility Problem in Hilbert Spaces and Its Applications to Compressed Sensing [J].
Suantai, Suthep ;
Kesornprom, Suparat ;
Cholamjiak, Prasit .
MATHEMATICS, 2019, 7 (09)
[30]   MODIFIED RELAXED CQ ALGORITHMS FOR SPLIT FEASIBILITY AND SPLIT EQUALITY PROBLEMS IN HILBERT SPACES [J].
Yu, Hai ;
Wang, Fenghui .
FIXED POINT THEORY, 2020, 21 (02) :819-832