LIMIT THEOREMS FOR BETTI NUMBERS OF RANDOM SIMPLICIAL COMPLEXES

被引:72
作者
Kahle, Matthew [1 ]
Meckes, Elizabeth [2 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
[2] Case Western Reserve Univ, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
random graph; topological data analysis; central limit theorem; random simplicial complex; HOMOLOGICAL CONNECTIVITY;
D O I
10.4310/HHA.2013.v15.n1.a17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There have been several recent articles studying homology of various types of random simplicial complexes. Several theorems have concerned thresholds for vanishing of homology groups, and in some cases expectations of the Betti numbers; however, little seems known so far about limiting distributions of random Betti numbers. In this article we establish Poisson and normal approximation theorems for Betti numbers of different kinds of random simplicial complexes: Erdos-Renyi random clique complexes, random Vietoris-Rips complexes, and random Cech complexes. These results may be of practical interest in topological data analysis.
引用
收藏
页码:343 / 374
页数:32
相关论文
共 19 条
[1]  
[Anonymous], 2003, OXFORD STUDIES PROBA
[2]  
[Anonymous], DECIS EC FINANCE
[3]  
[Anonymous], 1995, Handbook of combinatorics
[4]   2 MOMENTS SUFFICE FOR POISSON APPROXIMATIONS - THE CHEN-STEIN METHOD [J].
ARRATIA, R ;
GOLDSTEIN, L ;
GORDON, L .
ANNALS OF PROBABILITY, 1989, 17 (01) :9-25
[5]   THE FUNDAMENTAL GROUP OF RANDOM 2-COMPLEXES [J].
Babson, Eric ;
Hoffman, Christopher ;
Kahle, Matthew .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) :1-28
[6]   A CENTRAL LIMIT-THEOREM FOR DECOMPOSABLE RANDOM-VARIABLES WITH APPLICATIONS TO RANDOM GRAPHS [J].
BARBOUR, AD ;
KARONSKI, M ;
RUCINSKI, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) :125-145
[7]  
Bobrowski Omer, 2011, ARXIV11074775
[8]   Exchangeable pairs and Poisson approximation [J].
Chatterjee, Sourav ;
Diaconis, Persi ;
Meckes, Elizabeth .
PROBABILITY SURVEYS, 2005, 2 :64-106
[9]  
Edelsbrunner H., 1988, Proceedings of the Fourth Annual Symposium on Computational Geometry, P118, DOI 10.1145/73393.73406
[10]  
Erdos P., 1959, PUBL MATH-DEBRECEN, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12